The relationship of intracellular pH (pHi) to superoxide radical (O2-) generation was investigated in chemotactic factor-stimulated human neutrophils. Exposure of cells to 100 nM N-formylmethionyl-leucyl-phenylalanine (FMLP) caused activation of Na/H exchange which, in 140 mM Na medium (pH0 7.40), led to a rise in pHi from 7.22 to 7.80. This pHi change was sensitive to amiloride (apparent Ki 78 microM), an inhibitor of Na/H countertransport. The time course of the alkalinization was similar to that of FMLP-stimulated O2- production, which was complete by 5 min. In the presence of 1 mM amiloride, which nearly blocked the pHi transient elicited by FMLP, or in the absence of external Na, where intracellular acidification was observed in FMLP-stimulated cells, O2- release was still roughly 25-45% of normal. Thus, an alkalinization cannot be an obligatory requirement for O2- generation. By independently varying either pH0, pHi, or the internal or external concentrations of Na, both the direction and magnitude of the FMLP-induced pHi transients could be altered. In each instance, the amount of O2- release correlated directly with pHi and was enhanced by intracellular alkalinization. In the absence of FMLP, a rise in pHi to 7.7-7.8 by exposure of cells to 30 mM NH4Cl, 10 microM monensin (a Na/H exchanging ionophore), or after a prepulse with 18% CO2 did not result in O2- generation. Thus, these results imply that an alkalinization per se is not a sufficient trigger. Neutrophils exposed to 4 nM FMLP exhibited a threefold slower rate of alkalinization (reaching pHi approximately 7.80 by 20-30 min) as compared to that obtained with 100 nM FMLP and did not release significant amounts of O2- under normal incubation conditions. However, these cells could be induced to generate O2- when the degree of alkalinization was enhanced by internal Na depletion or by pretreatment with 18% CO2. Together, these results indicate a modulating effect of pHi on O2- production and suggest that other functional responses of neutrophils may be regulated by their pHi.
L Simchowitz
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.