Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Role of factor VIII-von Willebrand factor and fibronectin in the interaction of platelets in flowing blood with monomeric and fibrillar human collagen types I and III.
W P Houdijk, … , P F Nievelstein, J J Sixma
W P Houdijk, … , P F Nievelstein, J J Sixma
Published February 1, 1985
Citation Information: J Clin Invest. 1985;75(2):531-540. https://doi.org/10.1172/JCI111729.
View: Text | PDF
Research Article

Role of factor VIII-von Willebrand factor and fibronectin in the interaction of platelets in flowing blood with monomeric and fibrillar human collagen types I and III.

  • Text
  • PDF
Abstract

Platelet adhesion to monomeric collagen types I and III, which were purified from human umbilical arteries, was studied in a perfusion chamber under well defined flow conditions. For this purpose, glass coverslips were coated with 20-30 micrograms/cm2 of collagen types I and III by spraying a solution of these collagens with a retouching air brush. Platelet deposition increased with the time of perfusion. Adhesion to both collagen types was similar in the first 3 min, but increased platelet deposition occurred on collagen type III after 3 min due to thrombus formation. Adhesion at a shear rate of 800 s-1 was strongly impaired with plasma of a patient with von Willebrand's disease or with fibronectin-free plasma. Addition of purified fibronectin to fibronectin-free plasma restored adhesion to the level obtained with normal plasma. Platelet deposition in normal plasma increased with increasing shear rates. Platelet deposition in VWD-plasma was normal at 490 s-1, but there was no increase at higher shear rates. Platelet deposition in fibronectin-free plasma was diminished at all shear rates studied from 490 to 1,300 s-1. Perfusion with a human albumin solution (HAS) to which purified Factor VIII-von Willebrand factor complex (FVIII-VWF) and fibronectin had been added gave similar platelet deposition as with normal plasma. Preincubation of collagen with FVIII-VWF and perfusion with HAS containing fibronectin, or, conversely, preincubation with fibronectin and perfusion with HAS containing FVIII-VWF, also resulted in adhesion similar to that observed in normal plasma. Similar adhesion was also observed after preincubation with both FVIII-VWF and fibronectin and subsequent perfusion with HAS alone. Sequential preincubations with first FVIII-VWF and then fibronectin, or with first fibronectin and then FVIII-VWF followed by perfusion with HAS, also gave a similar adhesion as observed with normal plasma. These data indicate that platelet adhesion to monomeric collagen types I and III is dependent on both FVIII-VWF and fibronectin. FVIII-VWF is only required at relatively high shear rates; fibronectin also at relatively low shear rates. Their complementary role in platelet adhesion suggests separate binding sites for FVIII-VWF and fibronectin on collagen. Platelet deposition on performed fibrils of collagen types I and III was also studied. Initial adhesion expressed as percentage surface coverage was similar to that found with monomeric collagen, but thrombus formation was much enhanced. Adhesion on fibrillar collagen at 800 s(-1) was impaired in VWD-plasma and fibronectin-free plasma, and was restored by addition of purified fibronectin to fibronectin-free plasma. When perfusions were performed with HAS, only addition of FVIII-VWF was required for optimal adhesion to fibrillar collagen; addition of fibronectin had no effect. These data are in contrast to the studies with monomeric collagens described above, in which the addition of both FVIII-VWF and fibronectin was required. These data are also in contrast to the observation that in plasma both FVIII-VWF and fibronectin are required for optimal adhesion to fibrillar collagen.

Authors

W P Houdijk, K S Sakariassen, P F Nievelstein, J J Sixma

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required
Rich Text Editor, eletter_body
Editor toolbarsClipboard/Undo CutKeyboard shortcut Ctrl+X CopyKeyboard shortcut Ctrl+C PasteKeyboard shortcut Ctrl+V Paste as plain textKeyboard shortcut Ctrl+Alt+Shift+V Paste from Word UndoKeyboard shortcut Ctrl+Z RedoKeyboard shortcut Ctrl+YEditing Find Replace Select All Spell Check As You TypeLinks LinkKeyboard shortcut Ctrl+K Unlink AnchorForms Form Checkbox Radio Button Text Field Textarea Selection Field Button Image Button Hidden FieldTools Maximize Show BlocksDocument Source Save New Page Preview Print TemplatesBasic Styles BoldKeyboard shortcut Ctrl+B ItalicKeyboard shortcut Ctrl+I UnderlineKeyboard shortcut Ctrl+U Strikethrough Subscript Superscript Copy FormattingKeyboard shortcut Ctrl+Shift+C Remove FormatParagraph Insert/Remove Numbered List Insert/Remove Bulleted List Decrease Indent Increase Indent Block Quote Create Div Container Align Left Center Align Right Justify Text direction from left to right Text direction from right to left Set languageStylesStylesStylesFormatFormatFontFontSizeSizeColors Text Color Background Color
Press ALT 0 for help
◢Elements path 

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts