Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

A novel pathway for biosynthesis of cholestanol with 7 alpha-hydroxylated C27-steroids as intermediates, and its importance for the accumulation of cholestanol in cerebrotendinous xanthomatosis.
S Skrede, … , G Hopen, O Fausa
S Skrede, … , G Hopen, O Fausa
Published February 1, 1985
Citation Information: J Clin Invest. 1985;75(2):448-455. https://doi.org/10.1172/JCI111719.
View: Text | PDF
Research Article

A novel pathway for biosynthesis of cholestanol with 7 alpha-hydroxylated C27-steroids as intermediates, and its importance for the accumulation of cholestanol in cerebrotendinous xanthomatosis.

  • Text
  • PDF
Abstract

A mixture of 7 alpha-3H- and 4-14C-labeled cholesterol was administered intravenously to rats. Cholestanol with 20-30% lower ratio between 3H and 14C than in cholesterol could be isolated from different organs. In a healthy human control, cholestanol isolated from feces had a 3H/14C ratio which was 28% lower than in administered cholesterol. Cholesterol and coprostanol reisolated in these experiments had the same ratio between 3H and 14C as in the precursor. A previously unknown pathway for formation of cholestanol, involving 7 alpha-hydroxylated intermediates, may explain these results. Under normal conditions, this pathway is responsible for at most 30% of the cholestanol synthesized from cholesterol. Intravenous administration of the 7 alpha-3H- and 4-14C-labeled cholesterol to a patient with cerebrotendinous xanthomatosis (CTX) resulted in formation of cholestanol which had 70-75% lower 3H/14C ratio. It is concluded that the novel pathway involving 7 alpha-hydroxylated intermediates is accelerated in patients with CTX. This acceleration may contribute essentially to the accumulation of cholestanol, which is a predominant feature of this disease. 7 alpha-Hydroxycholesterol and 7 alpha-hydroxy-4-cholesten-3-one might be intermediates in the novel pathway to cholestanol. After intravenous administration of 7 beta-3H-labeled 7 alpha-hydroxycholesterol in a patient with CTX, significant amounts of 3H were incorporated into plasma and fecal cholestanol. Only small amounts of 7 alpha-hydroxycholesterol and 7 alpha-hydroxy-4-cholesten-3-one are excreted into the intestine, and we therefore conclude that the 7 alpha-dehydroxylation step mainly occurs in the liver. In CTX, the synthesis of cholestanol may be accelerated because the concentrations of 7 alpha-hydroxylated bile acid intermediates in the liver are increased. A possible mechanism for the conversion of a minor fraction of 7 alpha-hydroxycholesterol into cholestanol is suggested.

Authors

S Skrede, I Björkhem, M S Buchmann, G Hopen, O Fausa

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts