Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Disruption of the purine nucleotide cycle by inhibition of adenylosuccinate lyase produces skeletal muscle dysfunction.
J L Swain, … , O L Harbury, E W Holmes
J L Swain, … , O L Harbury, E W Holmes
Published October 1, 1984
Citation Information: J Clin Invest. 1984;74(4):1422-1427. https://doi.org/10.1172/JCI111553.
View: Text | PDF
Research Article Article has an altmetric score of 3

Disruption of the purine nucleotide cycle by inhibition of adenylosuccinate lyase produces skeletal muscle dysfunction.

  • Text
  • PDF
Abstract

Controversy exists as to whether the purine nucleotide cycle is important in normal skeletal muscle function. Patients with disruption of the cycle from a deficiency of AMP deaminase exhibit variable degrees of muscle dysfunction. An animal model was used to examine the effect of inhibition of the purine nucleotide cycle on muscle function. When the compound 5-amino-4-imidazolecarboxamide riboside (AICAriboside) is phosphorylated to the riboside monophosphate in the myocyte it is an inhibitor of adenylosuccinate lyase, one of the enzymes of the purine nucleotide cycle. AICAriboside was infused in 28 mice, and 22 mice received saline. Gastrocnemius muscle function was assessed in situ by recording isometric tension developed during stimulation. The purine nucleotide content of the muscle was measured before and after stimulation. Disruption of the purine nucleotide cycle during muscle stimulation was evidenced by a greater accumulation of adenylosuccinate, the substrate for adenylosuccinate lyase, in the animals receiving AICAriboside (0.60 +/- 0.10 vs. 0.05 +/- 0.01 nmol/mumol total creatine, P less than 0.0001). There was also a larger accumulation of inosine monophosphate in the AICAriboside vs. saline-treated animals at end stimulation (73 +/- 6 vs. 56 +/- 5 nmol/mumol total creatine, P less than 0.03). Inhibition of flux through the cycle was accompanied by muscle dysfunction during stimulation. Total developed tension in the AICAriboside group was 40% less than in the saline group (3,023 +/- 1,170 vs. 5,090 +/- 450 g . s, P less than 0.002). An index of energy production can be obtained by comparing the change in total phosphagen content per unit of developed tension in the two groups. This index indicates that less high energy phosphate compounds were generated in the AICAriboside group, suggesting that interruption of the purine nucleotide cycle interfered with energy production in the muscle. We conclude from these studies that defective energy generation is one mechanism whereby disruption of the purine nucleotide cycle produces muscle dysfunction.

Authors

J L Swain, J J Hines, R L Sabina, O L Harbury, E W Holmes

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required
Rich Text Editor, eletter_body
Editor toolbarsClipboard/Undo CutKeyboard shortcut Ctrl+X CopyKeyboard shortcut Ctrl+C PasteKeyboard shortcut Ctrl+V Paste as plain textKeyboard shortcut Ctrl+Alt+Shift+V Paste from Word UndoKeyboard shortcut Ctrl+Z RedoKeyboard shortcut Ctrl+YEditing Find Replace Select All Spell Check As You TypeLinks LinkKeyboard shortcut Ctrl+K Unlink AnchorForms Form Checkbox Radio Button Text Field Textarea Selection Field Button Image Button Hidden FieldTools Maximize Show BlocksDocument Source Save New Page Preview Print TemplatesBasic Styles BoldKeyboard shortcut Ctrl+B ItalicKeyboard shortcut Ctrl+I UnderlineKeyboard shortcut Ctrl+U Strikethrough Subscript Superscript Copy FormattingKeyboard shortcut Ctrl+Shift+C Remove FormatParagraph Insert/Remove Numbered List Insert/Remove Bulleted List Decrease Indent Increase Indent Block Quote Create Div Container Align Left Center Align Right Justify Text direction from left to right Text direction from right to left Set languageStylesStylesStylesFormatFormatFontFontSizeSizeColors Text Color Background Color
Press ALT 0 for help
◢Elements path 

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 1 patents
19 readers on Mendeley
See more details