Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Inert gas analysis of ventilation-perfusion matching during hemodialysis.
D D Ralph, … , D J Sherrard, M P Hlastala
D D Ralph, … , D J Sherrard, M P Hlastala
Published May 1, 1984
Citation Information: J Clin Invest. 1984;73(5):1385-1391. https://doi.org/10.1172/JCI111342.
View: Text | PDF
Research Article

Inert gas analysis of ventilation-perfusion matching during hemodialysis.

  • Text
  • PDF
Abstract

The mechanism of hypoxemia during hemodialysis was investigated by the multiple inert gas elimination technique in anesthetized, paralyzed, mechanically ventilated dogs. Profound leukopenia occurred in the first hour of a 2-h hemodialysis with a cuprophan membrane and dialysate that contained acetate. Arterial partial pressure of O2 and CO2 and oxygen consumption remained unchanged during dialysis. Pulmonary carbon dioxide elimination and lung respiratory exchange ratio decreased with the initiation of dialysis, remained depressed throughout the duration of dialysis, and returned to predialysis levels after the cessation of dialysis. Cardiac output diminished during dialysis but did not return to base-line levels after dialysis. Multiple indices calculated from inert gas analysis revealed no ventilation-perfusion mismatching during dialysis. The shunt and perfusion to regions of low alveolar ventilation-to-perfusion ratio (VA/Q) were unchanged during dialysis. There was no change in the mean or standard deviation of the profile of the percentage of total perfusion to regions of the lung that had VA/Q near 1.0; nor was there any increase in the directly calculated arterial-alveolar partial pressure differences for the inert gases during dialysis. Dead space became mildly elevated during dialysis. These results show that during dialysis with controlled ventilation there is no ventilation-perfusion mismatching that leads to hypoxemia. During spontaneous ventilation any hypoxemia must occur due to hypoventilation secondary to the CO2 exchange by the dialyzer and subsequent reduction in pulmonary CO2 exchange.

Authors

D D Ralph, S M Ott, D J Sherrard, M P Hlastala

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required
Rich Text Editor, eletter_body
Editor toolbarsClipboard/Undo CutKeyboard shortcut Ctrl+X CopyKeyboard shortcut Ctrl+C PasteKeyboard shortcut Ctrl+V Paste as plain textKeyboard shortcut Ctrl+Alt+Shift+V Paste from Word UndoKeyboard shortcut Ctrl+Z RedoKeyboard shortcut Ctrl+YEditing Find Replace Select All Spell Check As You TypeLinks LinkKeyboard shortcut Ctrl+K Unlink AnchorForms Form Checkbox Radio Button Text Field Textarea Selection Field Button Image Button Hidden FieldTools Maximize Show BlocksDocument Source Save New Page Preview Print TemplatesBasic Styles BoldKeyboard shortcut Ctrl+B ItalicKeyboard shortcut Ctrl+I UnderlineKeyboard shortcut Ctrl+U Strikethrough Subscript Superscript Copy FormattingKeyboard shortcut Ctrl+Shift+C Remove FormatParagraph Insert/Remove Numbered List Insert/Remove Bulleted List Decrease Indent Increase Indent Block Quote Create Div Container Align Left Center Align Right Justify Text direction from left to right Text direction from right to left Set languageStylesStylesStylesFormatFormatFontFontSizeSizeColors Text Color Background Color
Press ALT 0 for help
◢Elements path 

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts