Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Cleavage and inactivation of Factor IX by granulocyte elastase.
A Takaki, … , D L Enfield, A R Thompson
A Takaki, … , D L Enfield, A R Thompson
Published November 1, 1983
Citation Information: J Clin Invest. 1983;72(5):1706-1715. https://doi.org/10.1172/JCI111130.
View: Text | PDF
Research Article Article has an altmetric score of 3

Cleavage and inactivation of Factor IX by granulocyte elastase.

  • Text
  • PDF
Abstract

Radioiodinated Factor IX was cleaved by a crude sonicate from leukocytes. In the absence of calcium, fragments of less than 15,000 mol wt were seen from reduced samples on gel electrophoresis. After digestion in 2 mM calcium, however, electrophoresis of reduced samples showed, in addition to low molecular weight fragments, protein bands corresponding in size to heavy and light chains of Factor XIa-activated Factor IX. The cleaving activity in leukocyte sonicates was inhibited by soybean trypsin inhibitor, but only to a small extent by aprotinin. Granulocyte elastase was isolated from purified polymorphonuclear leukocyte granules by affinity chromatography on soybean trypsin inhibitor-agarose and further chromatography on carboxymethyl cellulose. The purified fraction contained two isozymes on acidic gels which cleaved both an ester sensitive to elastase and radiolabeled Factor IX. These two activities were inhibited by elastase-specific chloromethyl ketone. The isolated protease fraction rapidly inactivated apparent Factor IX activity in a coagulant assay system. The degree of inactivation correlated with the amount of intact, radiolabeled Factor IX cleaved. As with the crude sonicate, generation of the larger heavy and light chain-sized fragments was dependent upon calcium. To assess directly the effect of elastase on Factor IX, an immunospecific, active site-directed assay was developed. In this assay, the sample was incubated with solid-phase antibody to Factor IX and the amount of activated product was detected as that which had complexed with radioiodinated antithrombin III. In this system, exposure of Factor IX to Factor XIa showed progressive increase in the ability to bind antithrombin III, whereas after elastase, Factor XIa was unable to generate antithrombin III binding. The elastase-degraded Factor IX did not inhibit activation of additional Factor IX in clotting assays. When Factor IXa was incubated with elastase, binding of antithrombin III was decreased, corresponding to appearance of low molecular weight fragments on parallel samples that were reduced and electrophoresed. These data are consistent with elastase inactivating Factor IX by cleaving bonds near, but distinct from, bonds cleaved by Factor XIa.

Authors

A Takaki, D L Enfield, A R Thompson

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required
Rich Text Editor, eletter_body
Editor toolbarsClipboard/Undo CutKeyboard shortcut Ctrl+X CopyKeyboard shortcut Ctrl+C PasteKeyboard shortcut Ctrl+V Paste as plain textKeyboard shortcut Ctrl+Alt+Shift+V Paste from Word UndoKeyboard shortcut Ctrl+Z RedoKeyboard shortcut Ctrl+YEditing Find Replace Select All Spell Check As You TypeLinks LinkKeyboard shortcut Ctrl+K Unlink AnchorForms Form Checkbox Radio Button Text Field Textarea Selection Field Button Image Button Hidden FieldTools Maximize Show BlocksDocument Source Save New Page Preview Print TemplatesBasic Styles BoldKeyboard shortcut Ctrl+B ItalicKeyboard shortcut Ctrl+I UnderlineKeyboard shortcut Ctrl+U Strikethrough Subscript Superscript Copy FormattingKeyboard shortcut Ctrl+Shift+C Remove FormatParagraph Insert/Remove Numbered List Insert/Remove Bulleted List Decrease Indent Increase Indent Block Quote Create Div Container Align Left Center Align Right Justify Text direction from left to right Text direction from right to left Set languageStylesStylesStylesFormatFormatFontFontSizeSizeColors Text Color Background Color
Press ALT 0 for help
◢Elements path 

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 1 patents
3 readers on Mendeley
See more details