Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Insulin-like growth factor system abnormalities in hepatitis C-associated osteosclerosis. Potential insights into increasing bone mass in adults.
S Khosla, … , R L Hintz, C A Conover
S Khosla, … , R L Hintz, C A Conover
Published May 15, 1998
Citation Information: J Clin Invest. 1998;101(10):2165-2173. https://doi.org/10.1172/JCI1111.
View: Text | PDF
Research Article

Insulin-like growth factor system abnormalities in hepatitis C-associated osteosclerosis. Potential insights into increasing bone mass in adults.

  • Text
  • PDF
Abstract

Hepatitis C-associated osteosclerosis (HCAO) is a rare disorder characterized by a marked increase in bone mass during adult life. Despite the rarity of HCAO, understanding the mediator(s) of the skeletal disease is of great interest. The IGFs-I and -II have potent anabolic effects on bone, and alterations in the IGFs and/or IGF-binding proteins (IGFBPs) could be responsible for the increase in bone formation in this disorder. Thus, we assayed sera from seven cases of HCAO for IGF-I, IGF-II, IGF-IIE (an IGF-II precursor), and IGFBPs. The distribution of the serum IGFs and IGFBPs between their ternary ( approximately 150 kD) and binary (approximately 50 kD) complexes was also determined to assess IGF bioavailability. HCAO patients had normal serum levels of IGF-I and -II, but had markedly elevated levels of IGF-IIE. Of the IGFBPs, an increase in IGFBP-2 was unique to these patients and was not found in control hepatitis C or hepatitis B patients. IGF-I and -II in sera from patients with HCAO were carried, as in the case of sera from control subjects, bound to IGFBP-3 in the approximately 150-kD complex, which is retained in the circulation. However, IGF-IIE was predominantly in the approximately 50-kD complex in association with IGFBP-2; this complex can cross the capillary barrier and access target tissues. In vitro, we found that IGF-II enhanced by over threefold IGFBP-2 binding to extracellular matrix produced by human osteoblasts and that in an extracellular matrix-rich environment, the IGF-II/IGFBP-2 complex was as effective as IGF-II alone in stimulating human osteoblast proliferation. Thus, IGFBP-2 may facilitate the targeting of IGFs, and in particular IGF-IIE, to skeletal tissue in HCAO patients, with a subsequent stimulation by IGFs of osteoblast function. Our findings in HCAO suggest a possible means to increase bone mass in patients with osteoporosis.

Authors

S Khosla, A A Hassoun, B K Baker, F Liu, N N Zein, M P Whyte, C A Reasner, T B Nippoldt, R D Tiegs, R L Hintz, C A Conover

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts