Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Inhibition of the Lytic Action of Cell-bound Terminal Complement Components by Human High Density Lipoproteins and Apoproteins
Stephen I. Rosenfeld, … , Charles H. Packman, John P. Leddy
Stephen I. Rosenfeld, … , Charles H. Packman, John P. Leddy
Published April 1, 1983
Citation Information: J Clin Invest. 1983;71(4):795-808. https://doi.org/10.1172/JCI110833.
View: Text | PDF
Research Article

Inhibition of the Lytic Action of Cell-bound Terminal Complement Components by Human High Density Lipoproteins and Apoproteins

  • Text
  • PDF
Abstract

Human serum lipoproteins are known to participate in or modify several immunologically relevant responses, including the inhibition of target cell lysis initiated by fluid-phase C5b-7 (reactive lysis). We now report that human high density lipoproteins (HDL) can inhibit the complement (C) lytic mechanism after C5b-7, C5b-8, and even C5b-9 have been bound to the target membrane. This inhibitory activity of serum or plasma copurifies in hydrophobic chromatography with antigenically detected apolipoprotein A-I (apoA-I), the major HDL apoprotein, and with HDL in CsCl density gradient ultracentrifugation. Although HDL is more active than its apoproteins in fluid-phase inhibition of C5b-7-initiated reactive lysis, the HDL apoproteins are more effective after C5b-7, C5b-8, or C5b-9 have become bound to human or sheep erythrocytes (E). Highly purified HDL apoproteins, apoA-I and apoA-II, both have greater inhibitory activity than whole HDL on a protein weight basis, and some evidence has been obtained that apoA-I dissociating spontaneously from HDL may be the principal inhibitory moiety in physiological situations. HDL lipids themselves are inactive. The HDL-related inhibitors are ineffective when incubated with EC5b-7 and removed before C8 and C9 are added, and only minimally effective on cell-bound C5b-8 sites before C9 is added. They exert their most prominent inhibitory activity after C9 has been bound to EC5b-8 at low temperature, but before the final temperature-dependent, Zn++-inhibitable membrane damage steps have occurred. Therefore, HDL or its apoproteins do not act to repair already established transmembrane channels, but might interfere either with insertion of C9 into the lipid bilayer or with polymerization of C9 at C5b-8 sites. This heat-stable inhibitory activity can be demonstrated to modify lysis of erythrocytes in whole serum, i.e., it does not depend upon artificial interruption of the complement membrane attack sequence at any of the above-mentioned stages. Contributions of the target membrane itself to the mechanism of inhibition are suggested by the observations that, in contrast to sheep or normal human E, lysis of guinea pig E or human E from patients with paroxysmal nocturnal hemoglobinuria is inhibited poorly.

Authors

Stephen I. Rosenfeld, Charles H. Packman, John P. Leddy

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required
Rich Text Editor, eletter_body
Editor toolbarsClipboard/Undo CutKeyboard shortcut Ctrl+X CopyKeyboard shortcut Ctrl+C PasteKeyboard shortcut Ctrl+V Paste as plain textKeyboard shortcut Ctrl+Alt+Shift+V Paste from Word UndoKeyboard shortcut Ctrl+Z RedoKeyboard shortcut Ctrl+YEditing Find Replace Select All Spell Check As You TypeLinks LinkKeyboard shortcut Ctrl+K Unlink AnchorForms Form Checkbox Radio Button Text Field Textarea Selection Field Button Image Button Hidden FieldTools Maximize Show BlocksDocument Source Save New Page Preview Print TemplatesBasic Styles BoldKeyboard shortcut Ctrl+B ItalicKeyboard shortcut Ctrl+I UnderlineKeyboard shortcut Ctrl+U Strikethrough Subscript Superscript Copy FormattingKeyboard shortcut Ctrl+Shift+C Remove FormatParagraph Insert/Remove Numbered List Insert/Remove Bulleted List Decrease Indent Increase Indent Block Quote Create Div Container Align Left Center Align Right Justify Text direction from left to right Text direction from right to left Set languageStylesStylesStylesFormatFormatFontFontSizeSizeColors Text Color Background Color
Press ALT 0 for help
◢Elements path 

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts