Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Bactericidal versus Bacteriostatic Antibiotic Therapy of Experimental Pneumococcal Meningitis in Rabbits
W. Michael Scheld, Merle A. Sande
W. Michael Scheld, Merle A. Sande
Published March 1, 1983
Citation Information: J Clin Invest. 1983;71(3):411-419. https://doi.org/10.1172/JCI110785.
View: Text | PDF
Research Article

Bactericidal versus Bacteriostatic Antibiotic Therapy of Experimental Pneumococcal Meningitis in Rabbits

  • Text
  • PDF
Abstract

A rabbit model of pneumococcal meningitis was used to examine the importance of bactericidal vs. bacteriostatic antimicrobial agents in the therapy of meningitis 112 animals were infected with one of two strains of type III Streptococcus pneumoniae. Both strains were exquisitely sensitive to ampicillin, minimum inhibitory concentration (MIC)/minimum bactericidal concentration (MBC)<0.125 μg/ml. The activity of chloramphenicol against the two strains varied: strain1—MIC 2 μg/ml, MBC 16 μg/ml; strain2—MIC 1 μg/ml, MBC 2 μg/ml. Animals were treated with either ampicillin or chloramphenicol in dosages that achieved a peak bactericidal effect in cerebrospinal fluid (CSF) for ampicillin against both strains. Two different dosages were used for chloramphenicol. The first dosage achieved a peak CSF concentration of 4.4±1.1 μg/ml that produced a bacteriostatic effect against strain1 and bactericidal effect against strain2. The second dosage achieved a bactericidal effect against both strains (mean peak CSF concentration 30.0 μg/ml). All animals were treated intramuscularly three times a day for 5 d. CSF was sampled daily and 3 d after discontinuation of therapy for quantitative bacterial cultures. Results demonstrate that only antimicrobial therapy that achieved a bactericidal effect in CSF was associated with cure. Over 90% of animals treated with one of the bactericidal regimens (i.e., animals in which the bacterial counts in CSF dropped >5 log10 colony-forming units [cfu]/ ml after 48 h) had sterile CSF after 5 d of treatment. On the other hand, the regimen that achieved bacteriostatic concentrations (CSF drug concentrations between the MIC and MBC) produced a drop of 2.4 log10 cfu/ml by 48 h; however, none of the animals that survived had sterile CSF after 5 d. These studies clearly demonstrate in a strictly controlled manner that maximally effective antimicrobial therapy of experimental pneumococcal meningitis depends on achieving a bactericidal effect in CSF.

Authors

W. Michael Scheld, Merle A. Sande

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts