Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Lactoferrin enhances hydroxyl radical production by human neutrophils, neutrophil particulate fractions, and an enzymatic generating system.
D R Ambruso, R B Johnston Jr
D R Ambruso, R B Johnston Jr
Published February 1, 1981
Citation Information: J Clin Invest. 1981;67(2):352-360. https://doi.org/10.1172/JCI110042.
View: Text | PDF
Research Article

Lactoferrin enhances hydroxyl radical production by human neutrophils, neutrophil particulate fractions, and an enzymatic generating system.

  • Text
  • PDF
Abstract

During phagocytosis, neutrophils take oxygen from the surrounding medium and convert it to superoxide anion (O2-) and hydrogen peroxide (H2O2). Hydroxyl radical (.OH), a particularly potent oxidant, is believed to be produced by interaction between O2- and H2O2 in the presence of iron, according to the Haber-Weiss reactions. Production of .OH by whole human neutrophils, by particulate fractions from human neutrophils disrupted after stimulation, and by a xanthine oxidase system was measured by conversion of alpha-keto-gamma-methiol butyric acid to ethylene. FeCl3 or ferric EDTA enhanced ethylene production in all three systems by 155--406% of base line at a concentration of 50--100 microM. Iron-saturated human milk lactoferrin, 100 nM, increased ethylene generation by 127--296%; and purified human neutrophil lactoferrin, 10 nM, enhanced ethylene production by 167--369%. Thus, iron bound to lactoferrin was approximately 5,000 times more effective in producing an enhancement in ethylene generation than iron derived from FeCl3 or ferric EDTA. O2- and H2O2 were required for ethylene production in the presence of lactoferrin, since superoxide dismutase inhibited ethylene formation in the three systems by 76--97% and catalase inhibited by 76--98%. Ethylene production in the presence of lactoferrin was inhibited by the .OH scavengers mannitol, benzoate, and thiourea by 43--85, 45--94, and 76--96%, respectively. Thus, most of the ethylene production could be attributed to oxidation of alpha-keto-gamma-methiol butyric acid by .OH. The ability of neutrophil lactoferrin to provide iron efficiently to the oxygen radical-generating systems is compatible with a role for lactoferrin as regulator of .OH production. As such, lactoferrin may be an important component in the microbicidal activity of neutrophils.

Authors

D R Ambruso, R B Johnston Jr

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts