Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Affinity of Cystathionine β-Synthase for Pyridoxal 5′-Phosphate in Cultured Cells: A MECHANISM FOR PYRIDOXINE-RESPONSIVE HOMOCYSTINURIA
Mark H. Lipson, … , Jan Kraus, Leon E. Rosenberg
Mark H. Lipson, … , Jan Kraus, Leon E. Rosenberg
Published August 1, 1980
Citation Information: J Clin Invest. 1980;66(2):188-193. https://doi.org/10.1172/JCI109843.
View: Text | PDF

Affinity of Cystathionine β-Synthase for Pyridoxal 5′-Phosphate in Cultured Cells: A MECHANISM FOR PYRIDOXINE-RESPONSIVE HOMOCYSTINURIA

  • Text
  • PDF
Abstract

Previous attempts to correlate in vivo pyridoxine-responsiveness with in vitro assays of cystathionine β-synthase activity in synthase-deficient homocystinuric patients have been only partially successful. All such studies, however, have been conducted with extracts of cultured skin fibroblasts grown in medium containing a high concentration (1,000 ng/ml) of pyridoxal. Having recently shown that such growth conditions may obscure important aspects of enzyme-coenzyme interactions by saturating most synthase molecules with their cofactor, pyridoxal 5′-phosphate, we have established conditions for growth of cells in pyridoxal-free medium. Under these conditions, intracellular pyridoxal 5′-phosphate fell by >95%, and saturation of cystathionine β-synthase apoenzyme with pyridoxal 5′-phosphate decreased from a predepletion value of 70% to <10%. When such depleted cells were grown in media containing pyridoxal concentrations ranging from 0 to 1,000 ng/ml, cellular pyridoxal 5′-phosphate reached a maximum of 30 ng/mg cell protein at a medium pyridoxal concentration of 100 ng/ml. Maximal saturation of aposynthase with coenzyme in control cells was reached at a medium pyridoxal concentration of 10 ng/ml. In contrast, maximal saturation of residual aposynthase in cells from an in vivo responsive patient was achieved at a medium pyridoxal concentration of 25-50 ng/ml, whereas that from cells from an in vivo unresponsive patient was reached at 100 ng/ml. Estimates of the affinity of control and mutant cystathionine β-synthase for pyridoxal 5′-phosphate in cell extracts supported the differences observed in intact cells. The apparent Km of cystathionine β-synthase for pyridoxal 5′-phosphate in extracts of depleted cells from four in vivo-responsive patients was two to four times that of control. In contrast, the Km for pyridoxal 5′-phosphate in two lines from in vivo nonresponsive patients was 16- and 63-fold normal. These results suggest that cystathionine β-synthase activity in cells from patients containing a mutant enzyme with a moderately reduced affinity for pyridoxal 5′-phosphate can be increased by pyridoxine supplements in vivo, whereas that from patients whose enzyme has a more dramatically reduced affinity for the coenzyme cannot be so modulated because of limits on the capacity of such cells to accumulate and retain pyridoxal 5′-phosphate.

Authors

Mark H. Lipson, Jan Kraus, Leon E. Rosenberg

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required
Rich Text Editor, eletter_body
Editor toolbarsClipboard/Undo CutKeyboard shortcut Ctrl+X CopyKeyboard shortcut Ctrl+C PasteKeyboard shortcut Ctrl+V Paste as plain textKeyboard shortcut Ctrl+Alt+Shift+V Paste from Word UndoKeyboard shortcut Ctrl+Z RedoKeyboard shortcut Ctrl+YEditing Find Replace Select All Spell Check As You TypeLinks LinkKeyboard shortcut Ctrl+K Unlink AnchorForms Form Checkbox Radio Button Text Field Textarea Selection Field Button Image Button Hidden FieldTools Maximize Show BlocksDocument Source Save New Page Preview Print TemplatesBasic Styles BoldKeyboard shortcut Ctrl+B ItalicKeyboard shortcut Ctrl+I UnderlineKeyboard shortcut Ctrl+U Strikethrough Subscript Superscript Copy FormattingKeyboard shortcut Ctrl+Shift+C Remove FormatParagraph Insert/Remove Numbered List Insert/Remove Bulleted List Decrease Indent Increase Indent Block Quote Create Div Container Align Left Center Align Right Justify Text direction from left to right Text direction from right to left Set languageStylesStylesStylesFormatFormatFontFontSizeSizeColors Text Color Background Color
Press ALT 0 for help
◢Elements path 

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts