Antibodies to T cells present in the plasma of patients with active systemic lupus erythematosus (SLE) plus complement are able to eliminate concanavalin A-induced suppressor function for the proliferative responses of T cells to allogeneic lymphocytes (MLR) and of B cells to pokeweed mitogen (PWM). Such antibodies were found to be effective in eliminating suppressor function only when T cells were treated before activation; there was no effect when treatment was performed after activation. These studies indicate that the antibodies preferentially interact with a T cell necessary for the generation of suppressor cells, rather than with mature, activated suppressor cells. Studies of individual SLE patients indicate that the same defects observed in SLE T cells were induced in normal T cells by plasma from that patient. Such observations suggest that many T-cell defects associated with active SLE may not be intrinsic T-cell abnormalities, but, rather, secondary effects of anti-T-cell antibodies. Studies of the T-cell subpopulations responsible for suppression of the MLR and PWM responses indicate that only T gamma cells (T cells bearing receptors for the Fc portion of immunoglobulin [Ig]G) acted as precursors of suppressor cells for the MLR, whereas both T gamma and T non-gamma cells (T cells not bearing receptors for the Fc portion of IgG) could be activated to suppress the PWM response. Consistent with this observation, SLE anti-T-cell antibodies that preferentially killed T gamma cells preferentially eliminated suppressor cells for the MLR.
T Sakane, A D Steinberg, J P Reeves, I Green
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.