Stereospecific side-chain hydroxylations of 5β-cholestane-3α, 7α-diol were studied in mitochondrial and microsomal fractions of human liver. Incubation of 5β-cholestane-3α, 7α-diol resulted in hydroxylations at C-12, C-24, C-25, and C-26. Hydroxylations at C-24 and C-26 were accompanied by the introduction of additional asymmetric carbon atoms at C-24 and C-25 respectively, that led to the formation of two distinct pairs of diastereoisomers, namely 5β-cholestane-3α, 7α,24-triols (24R and 24S) and 5β-cholestane-3α, 7α,26-triols (25R and 25S). A sensitive and reproducible radioactive assay to measure the formation of the different biosynthetic 5β-cholestanetriols was developed. Optimal assay conditions for human mitochondrial and microsomal systems were tentatively established.
S. Shefer, F. W. Cheng, A. K. Batta, B. Dayal, G. S. Tint, G. Salen
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.