Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Study of Chloride Transport Across the Rabbit Cortical Collecting Tubule
Michael J. Hanley, Juha P. Kokko
Michael J. Hanley, Juha P. Kokko
Published July 1, 1978
Citation Information: J Clin Invest. 1978;62(1):39-44. https://doi.org/10.1172/JCI109111.
View: Text | PDF
Research Article

Study of Chloride Transport Across the Rabbit Cortical Collecting Tubule

  • Text
  • PDF
Abstract

Recent micropuncture studies have suggested that the collecting tubule may be involved in the regulation of extracellular fluid volume. The present studies were designed to evaluate chloride transport across the in vitro-perfused rabbit cortical collecting tubule inasmuch as chloride ion would ultimately affect extracellular fluid volume. The tubules were perfused and bathed with artificial solutions simulating ultrafiltrate. Four groups of studies were conducted. In groups one and two, tubules from rabbits not receiving desoxycorticosterone (DOCA) were compared to tubules from rabbits which had received DOCA (5 mg/day) for 1 wk. In groups three and four, tubules were obtained only from rabbits not receiving DOCA. In group one, sequential bidirectional chloride fluxes were measured. The ratio of chloride efflux to influx was 0.99±0.04 in tubules obtained from rabbits not receiving DOCA whereas it was 1.28±0.09 in tubules obtained from rabbits receiving DOCA, suggesting stimulation of net chloride flux under these conditions. In group 2, chemical chloride concentration and osmolality of the collected fluid were measured. Neither the chemical chloride concentration nor the osmolality of the collected fluid decreased significantly below their respective perfusion fluid values in tubules from non-DOCA-treated rabbits but there was a significant decrease in the chemical chloride concentration (10-42 meq/liter) and osmolality (10-42 mosmol/kg H2O of the collected fluid in tubules from DOCA-treated rabbits. In group three, unidirectional chloride permeabilities from lumen-to-bath were determined during the passage of current down the perfusion pipette. The alterations of the average lumen potential, −35±4 and +28±2 mV, did not influence unidirectional chloride movement suggesting that the cortical collecting tubule is quite impermeable to chloride. In group four, unidirectional chloride permeability from lumen-to-bath was measured before and after substitution of NaCH3SO4 for sodium chloride in the bath. Replacement of chloride by CH3SO4 reversibly decreased the apparent chloride permeability from 2.41±0.50 to 0.69±0.08 (×10−5 cm/s) demonstrating that 36Cl permeability is dependent on the chemical concentration of chloride.

Authors

Michael J. Hanley, Juha P. Kokko

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required
Rich Text Editor, eletter_body
Editor toolbarsClipboard/Undo CutKeyboard shortcut Ctrl+X CopyKeyboard shortcut Ctrl+C PasteKeyboard shortcut Ctrl+V Paste as plain textKeyboard shortcut Ctrl+Alt+Shift+V Paste from Word UndoKeyboard shortcut Ctrl+Z RedoKeyboard shortcut Ctrl+YEditing Find Replace Select All Spell Check As You TypeLinks LinkKeyboard shortcut Ctrl+K Unlink AnchorForms Form Checkbox Radio Button Text Field Textarea Selection Field Button Image Button Hidden FieldTools Maximize Show BlocksDocument Source Save New Page Preview Print TemplatesBasic Styles BoldKeyboard shortcut Ctrl+B ItalicKeyboard shortcut Ctrl+I UnderlineKeyboard shortcut Ctrl+U Strikethrough Subscript Superscript Copy FormattingKeyboard shortcut Ctrl+Shift+C Remove FormatParagraph Insert/Remove Numbered List Insert/Remove Bulleted List Decrease Indent Increase Indent Block Quote Create Div Container Align Left Center Align Right Justify Text direction from left to right Text direction from right to left Set languageStylesStylesStylesFormatFormatFontFontSizeSizeColors Text Color Background Color
Press ALT 0 for help
◢Elements path 

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts