Insulin, as well as other ligands which increase intracellular guanosine 3',5'-cyclic monophosphate (cGMP), augments thymic-derived (T)- lymphocyte effector activity as revealed by alloimmune lymphocyte-mediated cytotoxicity. The observation that insulin binds only to monocytes among circulating nonimmune human mononuclear cells fosterd reexamination of the mechanism by which insulin augments T-lymphocyte function. This report concerns a test of the hypothesis that the T cell is directly affected by insulin and that an insulin receptor emerges upon T lymphocytes consequent to immune activation. Spleens were removed from rats skin grafted across a major histocompatibility barrier. Lymphocytes were harvested from Ficoll-Hypaque density gradients and subsequently enriched for T cells by passage over one or two nylon wool columns. This population was composed of more than 98% T cells as assessed by surface marker techniques (Ig staining, erythrocyte antibody, and erythrocyte antibody complement rosetting, anti-T staining). There was no loss of augmentation of lymphocyte-mediated cytotoxicity induced by insulin, carbamycholine, and 8-bromo-cGMP in the purified cells when compared to unfractionated cells 7 days after transplantation. 125I-insulin bound saturably to the allostimulated T-enriched lymphocytes with maximum binding at 12.8 +/- 0.2 pg and a dissociation constant at equilibrium of 1.3 nM. In contrast, insulin receptors were not present on nonimmune T-enriched cells or on T cells from animals that received syngeneic grafts. The affinity of the lymphocyte insulin receptor was similar to that of more conventional insulin-sensitive tissues e.g., liver, adipocyte. After 89% of T cells from spleens on day 7 were lysed with anti-thy 1.1 antibody and complement, the ability to measure specific insulin binding was lost. These data confirm a physiologic role for insulin in T-lymphocyte effector function and describe the emergence of insulin receptors concomitant with cell sensitivity to ligand. Such receptors may play a role in hormonal modulation of the immune response.
J H Helderman, T B Strom
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.