Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

Comparison of NADH and NADPH oxidase activities in granules isolated from human polymorphonuclear leukocytes with a fluorometric assay.
D Iverson, … , J K Spitznagel, P Wang
D Iverson, … , J K Spitznagel, P Wang
Published February 1, 1977
Citation Information: J Clin Invest. 1977;59(2):282-290. https://doi.org/10.1172/JCI108639.
View: Text | PDF
Research Article

Comparison of NADH and NADPH oxidase activities in granules isolated from human polymorphonuclear leukocytes with a fluorometric assay.

  • Text
  • PDF
Abstract

A fluormetric method for the determination of pyridine nucleotides has been adapted for use in studying the reduced pyridine nucleotide oxidases in human polymorphonuclear leukocytes. In the presence of strong base the oxidized forms of the pyridine nucleotides form a highly fluorescent product. The small amounts of NAD(P) formed by the oxidase reactions can be determined with great sensitivity. This method has been compared to the radioisotopic assay for NADPH oxidation. Both methods gave essentially the same results in terms of nanomoles NADP produced by control, resting, and phagocytizing samples. Both NADPH and NADH oxidase activities were insensitive to cyanide. NADPH oxidation had a pH optimum of 5.5, while that for NADH appeared to be 6.0. Granules isolated from phagocytizing cells routinely showed more activity toward both substrates (two to threefold) than granules from resting cells. Both activities were located primarily in a granule fraction prepared by differential centrifugation. Oxidation of NADPH was routinely four to five times that of NADH at all except very high substrate levels. Measurable NADH oxidation was rarely seen below 0.80 mM NADH, while NADPH oxidation was easily measurable at 0.20 mM. One patient with chronic granulomatous disease was studied. At low substrate levels, there was no activity toward either substrate in granules isolated from either resting or phagocytizing cells of this patient, while granules isolated from normal control cells showed substantial activity at these substrate levels. Purification of the activities had been initiated with linear sucrose gradients. Both activities co-sediment to a very dense region of the gradient, a region different from that in which membrane or azurophil granules usually equilibrate. The peak gradient fractions show a 10-30-fold increase in specific activity over comparable granule fractions. These data suggest that the oxidase activities are associated with one enzyme that has different affinities for the two substrates ans support the contention that the oxidation of NADPH is responsible for the metabolic burst accompanying phagocytosis in human PMNL.

Authors

D Iverson, L R DeChatelet, J K Spitznagel, P Wang

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts