Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

The role of superoxide anion generation in phagocytic bactericidal activity. Studies with normal and chronic granulomatous disease leukocytes.
R B Johnston Jr, … , R L Baehner, K V RaJagopalan
R B Johnston Jr, … , R L Baehner, K V RaJagopalan
Published June 1, 1975
Citation Information: J Clin Invest. 1975;55(6):1357-1372. https://doi.org/10.1172/JCI108055.
View: Text | PDF
Research Article

The role of superoxide anion generation in phagocytic bactericidal activity. Studies with normal and chronic granulomatous disease leukocytes.

  • Text
  • PDF
Abstract

The capacity of human phagocytes to generate superoxide anion (O2-), a free radical of oxygen, and a possible role for this radical or its derivatives in the killing of phagocytized bacteria were explored using leukocytes from normal individuals and patients with chronic granulomatous disease (CGD). Superoxide dismutase, which removes O2-, consistently inhibited phagocytosis-associated nitroblue tetrazolium (NBT) reduction indicating the involvement of O2- in this process. Similarly, superoxide dismutase inhibited the luminescence that occurs with phagocytosis, implicating O2- in this phenomenon, perhaps through its spontaneous dismutation into singlet oxygen. Subcellular fractions from homogenates of both normal and CGD leukocytes generated O2- effectively in the presence of NADH as substrate. However, O2- generation by intact cells during phagocytosis was markedly diminished in nine patients with CGD. Leukocytes from mothers determined to be carriers of X-linked recessive CGD by intermediate phagocytic reduction of NBT elaborated O2- to an intermediate extent, further demonstrating the interrelationship between NBT reduction and O2- generation in phagocytizing cells. Activity of superoxide dismutase, the enzyme responsible for protecting the cell from the damaging effects of O2-, was approximately equal in homogenates of normal and CGD granulocytes. Polyacrylamide electrophoresis separated this activity into a minor band that appeared to be the manganese-containing superoxide dismutase associated with mitochondria and a more concentrated, cyanide-sensitive, cytosol form of the enzyme with electrophoretic mobility that corresponded to that of erythrocyte cuprozinc superoxide dismutase. Superoxide dismutase inhibited the phagocytic killing of Escherichia coli, Staphylococcus aureus, and Streptococcus viridans. A similar inhibitory effect was noted with catalase which removes hydrogen peroxide. Neither enzyme inhibited the ingestion of bacteria. Peroxide and O2- are believed to interact to generate the potent oxidant, hydroxyl radical (.OH). A requirement for .OH in the phagocytic bactericidal event might explain the apparent requirement for both O2- and H2O2 for such activity. In agreement with this possibility, benzoate and mannitol, scavengers of .OH, inhibited phagocytic bactericidal activity. Generation of singlet oxygen from O2- and .OH also might explain these findings. It would seem clear from these and other studies that the granulo cyte elaborates O2- as a concomitant of the respiratory burst that occurs with phagocytosis. To what extent the energy inherent in O2- is translated into microbialdeath through O2- itself, hydrogen peroxide, .OH, singlet oxygen, or some other agent remains to be clearly defined.

Authors

R B Johnston Jr, B B Keele Jr, H P Misra, J E Lehmeyer, L S Webb, R L Baehner, K V RaJagopalan

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required
Rich Text Editor, eletter_body
Editor toolbarsClipboard/Undo CutKeyboard shortcut Ctrl+X CopyKeyboard shortcut Ctrl+C PasteKeyboard shortcut Ctrl+V Paste as plain textKeyboard shortcut Ctrl+Alt+Shift+V Paste from Word UndoKeyboard shortcut Ctrl+Z RedoKeyboard shortcut Ctrl+YEditing Find Replace Select All Spell Check As You TypeLinks LinkKeyboard shortcut Ctrl+K Unlink AnchorForms Form Checkbox Radio Button Text Field Textarea Selection Field Button Image Button Hidden FieldTools Maximize Show BlocksDocument Source Save New Page Preview Print TemplatesBasic Styles BoldKeyboard shortcut Ctrl+B ItalicKeyboard shortcut Ctrl+I UnderlineKeyboard shortcut Ctrl+U Strikethrough Subscript Superscript Copy FormattingKeyboard shortcut Ctrl+Shift+C Remove FormatParagraph Insert/Remove Numbered List Insert/Remove Bulleted List Decrease Indent Increase Indent Block Quote Create Div Container Align Left Center Align Right Justify Text direction from left to right Text direction from right to left Set languageStylesStylesStylesFormatFormatFontFontSizeSizeColors Text Color Background Color
Press ALT 0 for help
◢Elements path 

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts