Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Submit a comment

An efficient optimization technique for recovering ventilation-perfusion distributions from inert gas data. Effects of random experimental error.
S A Jaliwala, … , R E Mates, F J Klocke
S A Jaliwala, … , R E Mates, F J Klocke
Published January 1, 1975
Citation Information: J Clin Invest. 1975;55(1):188-192. https://doi.org/10.1172/JCI107910.
View: Text | PDF
Research Article

An efficient optimization technique for recovering ventilation-perfusion distributions from inert gas data. Effects of random experimental error.

  • Text
  • PDF
Abstract

A variable metric optimization method of numerical analysis has been used to recover known distributions of intrapulmonary ventilation-perfusion ratios from inert gas data. Hypothetical lungs were simulated and corresponding inert gas retentions calculated. By using error-free retentions for seven gases and a 50-compartment model, it was possible to recover distributions containing up to three modes accurately and with greater efficiency than with other numerical methods. When random error of a magnitude consistent with present analytical techniques was introduced into retention data, the recovered distributions differed qualitatively from the original ones. This resulted from the ill-conditioned nature of the mathematical problem, which makes a recovered distribution extremely sensitive to small errors in retention. Thus, present levels of measurement error represent an important limitation in current techniques for deriving distributions from inert gas measurements.

Authors

S A Jaliwala, R E Mates, F J Klocke

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts