Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 3

See more details

Referenced in 1 patents
43 readers on Mendeley
  • Article usage
  • Citations to this article (158)

Advertisement

Research Article Free access | 10.1172/JCI118716

Apolipoprotein A-I is required for cholesteryl ester accumulation in steroidogenic cells and for normal adrenal steroid production.

A S Plump, S K Erickson, W Weng, J S Partin, J L Breslow, and D L Williams

Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University, New York 10021, USA.

Find articles by Plump, A. in: PubMed | Google Scholar

Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University, New York 10021, USA.

Find articles by Erickson, S. in: PubMed | Google Scholar

Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University, New York 10021, USA.

Find articles by Weng, W. in: PubMed | Google Scholar

Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University, New York 10021, USA.

Find articles by Partin, J. in: PubMed | Google Scholar

Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University, New York 10021, USA.

Find articles by Breslow, J. in: PubMed | Google Scholar

Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University, New York 10021, USA.

Find articles by Williams, D. in: PubMed | Google Scholar

Published June 1, 1996 - More info

Published in Volume 97, Issue 11 on June 1, 1996
J Clin Invest. 1996;97(11):2660–2671. https://doi.org/10.1172/JCI118716.
© 1996 The American Society for Clinical Investigation
Published June 1, 1996 - Version history
View PDF
Abstract

In addition to its ability to remove cholesterol from cells, HDL also delivers cholesterol to cells through a poorly defined process in which cholesteryl esters are selectively transferred from HDL particles into the cell without the uptake and degradation of the lipoprotein particle. The HDL-cholesteryl ester selective uptake pathway is known to occur in human, rabbit, and rodent hepatocytes where it may contribute to the clearance of plasma cholesteryl ester. The selective uptake pathway has been studied most extensively in steroidogenic cells of rodents in which it accounts for 90% or more of the cholesterol destined for steroid production or cholesteryl ester accumulation. In this study we have used apo A-I-, apo A-II-, and apo E-deficient mice created by gene targeting in embryonic stem cells to test the importance of the three major HDL proteins in determining cholesteryl ester accumulation in steroidogenic cells of the adrenal gland, ovary, and testis. apo E and apo A-II deficiencies were found to have only modest effects on cholesteryl ester accumulation. In contrast, apo A-I deficiency caused an almost complete failure to accumulate cholesteryl ester in steroidogenic cells. These results suggest that apo A-I is essential for the selective uptake of HDL-cholesteryl esters. The lack of apo A-I has a major impact on adrenal gland physiology causing diminished basal corticosteroid production, a blunted steroidogenic response to stress, and increased expression of compensatory pathways to provide cholesterol substrate for steroid production.

Version history
  • Version 1 (June 1, 1996): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 3
  • Article usage
  • Citations to this article (158)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 1 patents
43 readers on Mendeley
See more details