Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI117672

Quantification of Aquaporin-CHIP water channel protein in microdissected renal tubules by fluorescence-based ELISA.

Y Maeda, B L Smith, P Agre, and M A Knepper

Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1598.

Find articles by Maeda, Y. in: JCI | PubMed | Google Scholar

Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1598.

Find articles by Smith, B. in: JCI | PubMed | Google Scholar

Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1598.

Find articles by Agre, P. in: JCI | PubMed | Google Scholar

Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1598.

Find articles by Knepper, M. in: JCI | PubMed | Google Scholar

Published January 1, 1995 - More info

Published in Volume 95, Issue 1 on January 1, 1995
J Clin Invest. 1995;95(1):422–428. https://doi.org/10.1172/JCI117672.
© 1995 The American Society for Clinical Investigation
Published January 1, 1995 - Version history
View PDF
Abstract

Several transporters have been localized along the nephron by physiological methods or immunocytochemistry. However, the actual abundance of these molecules has not been established. To accomplish this goal, we have developed a fluorescence-based ELISA method and have used it to quantitate Aquaporin-CHIP (AQP-CHIP) water channel protein in rat kidney tubules. Microdissected tubules (2 mm/sample, permeabilized with 0.5% Triton X-100) or purified AQP-CHIP standards (0-200 fmol) were utilized in a fluorescence ELISA protocol after covalent immobilization on epoxy-activated Sepharose beads. The lower limit of detection was 2.4 fmol of AQP-CHIP. Preabsorption with excess purified AQP-CHIP or use of nonimmune serum eliminated the signal. In proximal segments, the measured AQP-CHIP was linearly related to tubule length (1-10 mm). The measured AQP-CHIP was (mean +/- SE, fmol/mm): S-1 proximal, 10.8 +/- 2.1; S-2, 10.0 +/- 2.3; S-3, 21.3 +/- 3.1; type 1 thin descending limb (DTL), 12.9 +/- 4.6; type 2 DTL, 86.5 +/- 19.5; type 3 DTL, 43.0 +/- 11.2. In thin ascending limbs, thick ascending limbs, distal convoluted tubules, connecting tubules, and collecting ducts, the AQP-CHIP signal was indistinguishable from zero. Based on the unit water conductance of single CHIP molecules, our calculations show that the content of AQP-CHIP is sufficient to explain water permeability measured in isolated proximal tubules and DTL segments.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 422
page 422
icon of scanned page 423
page 423
icon of scanned page 424
page 424
icon of scanned page 425
page 425
icon of scanned page 426
page 426
icon of scanned page 427
page 427
icon of scanned page 428
page 428
Version history
  • Version 1 (January 1, 1995): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts