Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (99)

Advertisement

Research Article Free access | 10.1172/JCI115652

Age-dependent expression of the erythropoietin gene in rat liver and kidneys.

K U Eckardt, P J Ratcliffe, C C Tan, C Bauer, and A Kurtz

Physiologisches Institut, Universität Zürich, Switzerland.

Find articles by Eckardt, K. in: PubMed | Google Scholar

Physiologisches Institut, Universität Zürich, Switzerland.

Find articles by Ratcliffe, P. in: PubMed | Google Scholar

Physiologisches Institut, Universität Zürich, Switzerland.

Find articles by Tan, C. in: PubMed | Google Scholar

Physiologisches Institut, Universität Zürich, Switzerland.

Find articles by Bauer, C. in: PubMed | Google Scholar

Physiologisches Institut, Universität Zürich, Switzerland.

Find articles by Kurtz, A. in: PubMed | Google Scholar

Published March 1, 1992 - More info

Published in Volume 89, Issue 3 on March 1, 1992
J Clin Invest. 1992;89(3):753–760. https://doi.org/10.1172/JCI115652.
© 1992 The American Society for Clinical Investigation
Published March 1, 1992 - Version history
View PDF
Abstract

Using RNAse protection, we have made quantitative measurements of erythropoietin (EPO) mRNA in liver and kidneys of developing rats (days 1-54), to determine the relative contribution of both organs to the total EPO mRNA, to monitor changes which occur with development, and to compare the hypoxia-induced accumulation of EPO mRNA with the changes in serum EPO concentrations. To determine whether developmental and organ-specific responsiveness is related to the type of hypoxic stimulus, normobaric hypoxia was compared with exposure to carbon monoxide (functional anemia). Under both stimuli EPO mRNA concentration in liver was maximal on day 7 and declined during development. In contrast, EPO mRNA concentration in kidney increased during development from day 1 when it was 30-65% the hepatic concentration to day 54 when it was 12-fold higher than in liver. When organ weight was considered the liver was found to contain the majority of EPO mRNA in the first three to four weeks of life, and although, in stimulated animals, the hepatic proportion declined from 85-91% on day 1, it remained approximately 33% at day 54 and was similar for the two types of stimuli. When normalized for body weight the sum of renal and hepatic EPO mRNA in animals of a particular age was related linearly to serum hormone concentrations. However, the slope of this regression increased progressively with development, suggesting age-dependent alterations in translational efficiency or EPO metabolism.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 753
page 753
icon of scanned page 754
page 754
icon of scanned page 755
page 755
icon of scanned page 756
page 756
icon of scanned page 757
page 757
icon of scanned page 758
page 758
icon of scanned page 759
page 759
icon of scanned page 760
page 760
Version history
  • Version 1 (March 1, 1992): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (99)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts