Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (204)

Advertisement

Research Article Free access | 10.1172/JCI114772

Rapid and reversible secretion changes during uncoupling of rat insulin-producing cells.

P Meda, D Bosco, M Chanson, E Giordano, L Vallar, C Wollheim, and L Orci

Department of Morphology, University of Geneva Medical School, Switzerland.

Find articles by Meda, P. in: PubMed | Google Scholar

Department of Morphology, University of Geneva Medical School, Switzerland.

Find articles by Bosco, D. in: PubMed | Google Scholar

Department of Morphology, University of Geneva Medical School, Switzerland.

Find articles by Chanson, M. in: PubMed | Google Scholar

Department of Morphology, University of Geneva Medical School, Switzerland.

Find articles by Giordano, E. in: PubMed | Google Scholar

Department of Morphology, University of Geneva Medical School, Switzerland.

Find articles by Vallar, L. in: PubMed | Google Scholar

Department of Morphology, University of Geneva Medical School, Switzerland.

Find articles by Wollheim, C. in: PubMed | Google Scholar

Department of Morphology, University of Geneva Medical School, Switzerland.

Find articles by Orci, L. in: PubMed | Google Scholar

Published September 1, 1990 - More info

Published in Volume 86, Issue 3 on September 1, 1990
J Clin Invest. 1990;86(3):759–768. https://doi.org/10.1172/JCI114772.
© 1990 The American Society for Clinical Investigation
Published September 1, 1990 - Version history
View PDF
Abstract

To determine whether insulin secretion is affected by a blockage of gap junctions between B cells, we have studied the secretion of rat pancreatic islets of Langerhans, primary dispersed islet cells, and cells of the RINm5F line, during short-term exposure to heptanol. Within minutes, this alkanol blocked gap junctions between the B cells of intact islets and abolished their normal secretory response to glucose. These two changes were rapidly and fully reversible after return of the islets to control medium. We further found that heptanol had no significant effect on the glucose-stimulated secretion of single B cells but inhibited that of B cell pairs. In the clone of RINm5F cells, whose junctional coupling and D-glyceraldehyde-induced stimulation of insulin release by aggregated cells were also inhibited by heptanol, this alkanol did not perturb intracellular pH and Ca2+ and the most distal steps of the secretion pathway. In summary, a gap junction blocker affected the secretion of insulin-producing cells by a mechanism which is dependent on cell contact and is not associated with detectable pleiotropic perturbations of the cell secretory machinery. The data provide evidence for the involvement of junctional coupling in the control of insulin secretion.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 759
page 759
icon of scanned page 760
page 760
icon of scanned page 761
page 761
icon of scanned page 762
page 762
icon of scanned page 763
page 763
icon of scanned page 764
page 764
icon of scanned page 765
page 765
icon of scanned page 766
page 766
icon of scanned page 767
page 767
icon of scanned page 768
page 768
Version history
  • Version 1 (September 1, 1990): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (204)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts