Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 3

See more details

Referenced in 1 patents
175 readers on Mendeley
  • Article usage
  • Citations to this article (263)

Advertisement

Research Article Free access | 10.1172/JCI113822

Myocardial substrate utilization during exercise in humans. Dual carbon-labeled carbohydrate isotope experiments.

E W Gertz, J A Wisneski, W C Stanley, and R A Neese

Department of Medicine, University of California, San Francisco 94121.

Find articles by Gertz, E. in: JCI | PubMed | Google Scholar

Department of Medicine, University of California, San Francisco 94121.

Find articles by Wisneski, J. in: JCI | PubMed | Google Scholar

Department of Medicine, University of California, San Francisco 94121.

Find articles by Stanley, W. in: JCI | PubMed | Google Scholar

Department of Medicine, University of California, San Francisco 94121.

Find articles by Neese, R. in: JCI | PubMed | Google Scholar

Published December 1, 1988 - More info

Published in Volume 82, Issue 6 on December 1, 1988
J Clin Invest. 1988;82(6):2017–2025. https://doi.org/10.1172/JCI113822.
© 1988 The American Society for Clinical Investigation
Published December 1, 1988 - Version history
View PDF
Abstract

The purpose of this study was to investigate myocardial substrate utilization during moderate intensity exercise in humans. Coronary sinus and arterial catheters were inserted in nine healthy trained male subjects (mean age, 25 +/- 6 (SD) years). Dual carbon-labeled isotopes were infused, and substrate oxidation was quantitated by measuring myocardial production of 14CO2. Supine cycle ergometer exercise was performed at 40% of the subject's maximal O2 uptake. With exercise there was a significant increase in the arterial lactate level (P less than 0.05). A highly significant positive correlation was observed between the lactate level and the isotopic lactate extraction (r = 0.93; P less than 0.001). The myocardial isotopic lactate uptake increased from 34.9 +/- 6.5 mumol/min at rest to 120.4 +/- 36.5 mumol/min at 5 min of exercise (P less than 0.005). The 14CO2 data demonstrated that 100.4 +/- 3.5% of the lactate extracted as determined by isotopic analysis underwent oxidative decarboxylation. Myocardial glucose uptake also increased significantly with exercise (P less than 0.04). The [14C]glucose data showed that only 26.0 +/- 8.5% of the glucose extracted underwent immediate oxidation at rest, and during exercise the percentage being oxidized increased to 52.6 +/- 7.3% (P less than 0.01). This study demonstrates for the first time in humans an increase in myocardial oxidation of exogenous glucose and lactate during moderate intensity exercise.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 2017
page 2017
icon of scanned page 2018
page 2018
icon of scanned page 2019
page 2019
icon of scanned page 2020
page 2020
icon of scanned page 2021
page 2021
icon of scanned page 2022
page 2022
icon of scanned page 2023
page 2023
icon of scanned page 2024
page 2024
icon of scanned page 2025
page 2025
Version history
  • Version 1 (December 1, 1988): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 3
  • Article usage
  • Citations to this article (263)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 1 patents
175 readers on Mendeley
See more details