Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 3

See more details

Referenced in 2 patents
23 readers on Mendeley
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI112002

Identification of intracellular factor XIII in human monocytes and macrophages.

P Henriksson, S Becker, G Lynch, and J McDonagh

Find articles by Henriksson, P. in: JCI | PubMed | Google Scholar

Find articles by Becker, S. in: JCI | PubMed | Google Scholar

Find articles by Lynch, G. in: JCI | PubMed | Google Scholar

Find articles by McDonagh, J. in: JCI | PubMed | Google Scholar

Published August 1, 1985 - More info

Published in Volume 76, Issue 2 on August 1, 1985
J Clin Invest. 1985;76(2):528–534. https://doi.org/10.1172/JCI112002.
© 1985 The American Society for Clinical Investigation
Published August 1, 1985 - Version history
View PDF
Abstract

Factor XIII is a blood protransglutaminase that is distributed in plasma and platelets. The extracellular and intracellular zymogenic forms differ in that the plasma zymogen contains A and B subunits, while the platelet zymogen has A subunits only. Both zymogens form the same enzyme. Erythrocytes, in contrast, contain a tissue transglutaminase that is distinct from Factor XIII. In this study other bone marrow-derived cells were examined for transglutaminase activity. Criteria that were used to differentiate Factor XIII proteins from erythrocyte transglutaminase included: (a) immunochemical and immunohistochemical identification with monospecific polyclonal and monoclonal antibodies to Factor XIII proteins, (b) requirement for thrombin cleavage to express activity, (c) pattern of fibrin cross-linking catalyzed by the enzyme, and (d) different electrophoretic mobilities in nondenaturing gel systems. By these criteria human peripheral blood monocytes, peritoneal macrophages, and monocytes maintained in culture contain an intracellular protransglutaminase that is the same as platelet Factor XIII. The monocyte-macrophage protein is thrombin-sensitive, and under appropriate conditions there is no enzyme expression without activation of the zymogen. Both the monocyte-macrophage zymogen and enzyme have the same electrophoretic mobilities as platelet Factor XIII zymogen and enzyme. Antibody to A protein reacts with the monocyte-macrophage protein. B protein is not associated with this intracellular zymogen. By immunoperoxidase staining monocyte-macrophage protein seems to be localized in the cytoplasm, similar to the known cytoplasmic distribution of platelet and megakaryocyte Factor XIII. These procedures were also used to study populations of human granulocytes and lymphocytes, and protransglutaminase activity was not observed in these cells.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 528
page 528
icon of scanned page 529
page 529
icon of scanned page 530
page 530
icon of scanned page 531
page 531
icon of scanned page 532
page 532
icon of scanned page 533
page 533
icon of scanned page 534
page 534
Version history
  • Version 1 (August 1, 1985): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 3
  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 2 patents
23 readers on Mendeley
See more details