The canalicular (apical) membrane of the hepatocyte contains an ATP-dependent transport system for organic anions, known as the multispecific organic anion transporter (cMOAT). The deduced amino acid sequence of cMOAT is 49% identical to that of the human multidrug resistance- associated protein (MRP) MRP1, and cMOAT and MRP1 are members of the same sub-family of adenine nucleotide binding cassette transporters. In contrast to MRP1, cMOAT was predominantly found intracellularly in nonpolarized cells, suggesting that cMOAT requires a polarized cell for plasma membrane routing. Therefore, we expressed cMOAT cDNA in polarized kidney epithelial MDCK cell lines. When these cells are grown in a monolayer, cMOAT localizes to the apical plasma membrane. We demonstrate that cMOAT causes transport of the organic anions S-(2,4-dinitrophenyl)-glutathione, the glutathione conjugate of ethacrynic acid, and S-(PGA1)-glutathione, a substrate not shown to be transported by organic anion transporters previously. Transport is inhibited only inefficiently by compounds known to block MRP1. We also show that cMOAT causes transport of the anticancer drug vinblastine to the apical side of a cell monolayer. We conclude that cMOAT is a 5'-adenosine triphosphate binding cassette transporter that potentially might be involved in drug resistance in mammalian cells.
R Evers, M Kool, L van Deemter, H Janssen, J Calafat, L C Oomen, C C Paulusma, R P Oude Elferink, F Baas, A H Schinkel, P Borst
Apert syndrome, associated with fibroblast growth factor receptor (FGFR) 2 mutations, is characterized by premature fusion of cranial sutures. We analyzed proliferation and differentiation of calvaria cells derived from Apert infants and fetuses with FGFR-2 mutations. Histological analysis revealed premature ossification, increased extent of subperiosteal bone formation, and alkaline phosphatase- positive preosteoblastic cells in Apert fetal calvaria compared with age-matched controls. Preosteoblastic calvaria cells isolated from Apert infants and fetuses showed normal cell growth in basal conditions or in response to exogenous FGF-2. In contrast, the number of alkaline phosphatase- positive calvaria cells was fourfold higher than normal in mutant fetal calvaria cells with the most frequent Apert FGFR-2 mutation (Ser252Trp), suggesting increased maturation rate of cells in the osteoblastic lineage. Biochemical and Northern blot analyses also showed that the expression of alkaline phosphatase and type 1 collagen were 2-10-fold greater than normal in mutant fetal calvaria cells. The in vitro production of mineralized matrix formed by immortalized mutant fetal calvaria cells cultured in aggregates was also increased markedly compared with control immortalized fetal calvaria cells. The results show that Apert FGFR-2 mutations lead to an increase in the number of precursor cells that enter the osteogenic pathway, leading ultimately to increased subperiosteal bone matrix formation and premature calvaria ossification during fetal development, which establishes a connection between the altered genotype and cellular phenotype in Apert syndromic craniosynostosis.
A Lomri, J Lemonnier, M Hott, N de Parseval, E Lajeunie, A Munnich, D Renier, P J Marie