Heart failure (HF) has been referred to as the cardiovascular epidemic of our time. Understanding the molecular determinants of HF disease progression and mortality risk is of utmost importance. In this issue of the JCI, Zhang et al. uncover an important link between clinical HF mortality risk and a common variant that regulates SCN5A expression through microRNA-dependent (miR-dependent)mechanisms. They also demonstrate that haploinsufficiency of SCN5A is associated with increased accumulation of reactive oxygen species (ROS) in a genetically engineered murine model. Their data suggest that even modest depression of SCN5A expression may promote pathologic cardiac remodeling and progression of HF.
David S. Park, Glenn I. Fishman
Usage data is cumulative from March 2024 through March 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 430 | 30 |
133 | 16 | |
Figure | 60 | 1 |
Citation downloads | 59 | 0 |
Totals | 682 | 47 |
Total Views | 729 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.