Murine fetal thymic organ culture was used to investigate the mechanism by which adenosine deaminase (ADA) deficiency causes T-cell immunodeficiency. C57BL/6 fetal thymuses treated with the specific ADA inhibitor 2′-deoxycoformycin exhibited features of the human disease, including accumulation of dATP and inhibition of S-adenosylhomocysteine hydrolase enzyme activity. Although T-cell receptor (TCR) Vβ gene rearrangements and pre–TCR-α expression were normal in ADA-deficient cultures, the production of αβ TCR+ thymocytes was inhibited by 95%, and differentiation was blocked beginning at the time of β selection. In contrast, the production of γδ TCR+ thymocytes was unaffected. Similar results were obtained using fetal thymuses from ADA gene-targeted mice. Differentiation and proliferation were preserved by the introduction of a bcl-2 transgene or disruption of the gene encoding apoptotic protease activating factor–1. The pan-caspase inhibitor carbobenzoxy-Val-Ala-Asp-fluoromethyl ketone also significantly lessened the effects of ADA deficiency and prevented the accumulation of dATP. Thus, ADA substrates accumulate and disrupt thymocyte development in ADA deficiency. These substrates derive from thymocytes that undergo apoptosis as a consequence of failing to pass developmental checkpoints, such as β selection.
Linda F. Thompson, C. Justin Van De Wiele, Aletha B. Laurent, Scott W. Hooker, James G. Vaughn, Hong Jiang, Kamayani Khare, Rodney E. Kellems, Michael R. Blackburn, Michael S. Hershfield, Regina Resta
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 301 | 192 |
53 | 14 | |
Figure | 159 | 3 |
Table | 43 | 0 |
Citation downloads | 62 | 0 |
Totals | 618 | 209 |
Total Views | 827 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.