Cancer cell dependence on activated oncogenes is therapeutically targeted, but acquired resistance is virtually unavoidable. Here we show that the treatment of addicted melanoma cells with BRAF inhibitors, and of breast cancer cells with HER2-targeted drugs, led to an adaptive rise in neuropilin-1 (NRP1) expression, which is crucial for the onset of acquired resistance to therapy. Moreover, NRP1 levels dictated the efficacy of MET oncogene inhibitors in addicted stomach and lung carcinoma cells. Mechanistically, NRP1 induced a JNK-dependent signaling cascade leading to the upregulation of alternative effector kinases EGFR or IGF1R, which in turn sustained cancer cell growth and mediated acquired resistance to BRAF, HER2, or MET inhibitors. Notably, the combination with NRP1-interfering molecules improved the efficacy of oncogene-targeted drugs and prevented or even reversed the onset of resistance in cancer cells and tumor models. Our study provides the rationale for targeting the NRP1-dependent upregulation of tyrosine kinases, which are responsible for loss of responsiveness to oncogene-targeted therapies.
Sabrina Rizzolio, Gabriella Cagnoni, Chiara Battistini, Stefano Bonelli, Claudio Isella, Jo A. Van Ginderachter, René Bernards, Federica Di Nicolantonio, Silvia Giordano, Luca Tamagnone
This file is in Adobe Acrobat (PDF) format. If you have not installed and configured the Adobe Acrobat Reader on your system.
PDFs are designed to be printed out and read, but if you prefer to read them online, you may find it easier if you increase the view size to 125%.
Many versions of the free Acrobat Reader do not allow Save. You must instead save the PDF from the JCI Online page you downloaded it from. PC users: Right-click on the Download link and choose the option that says something like "Save Link As...". Mac users should hold the mouse button down on the link to get these same options.