Critical immune-suppressive pathways beyond programmed death 1 (PD-1) and programmed death ligand 1 (PD-L1) require greater attention. Nectins and nectin-like molecules might be promising targets for immunotherapy, since they play critical roles in cell proliferation and migration and exert immunomodulatory functions in pathophysiological conditions. Here, we show CD155 expression in both malignant cells and tumor-infiltrating myeloid cells in humans and mice. Cd155–/– mice displayed reduced tumor growth and metastasis via DNAM-1 upregulation and enhanced effector function of CD8+ T and NK cells, respectively. CD155-deleted tumor cells also displayed slower tumor growth and reduced metastases, demonstrating the importance of a tumor-intrinsic role of CD155. CD155 absence on host and tumor cells exerted an even greater inhibition of tumor growth and metastasis. Blockade of PD-1 or both PD-1 and CTLA4 was more effective in settings in which CD155 was limiting, suggesting the clinical potential of cotargeting PD-L1 and CD155 function.
Xian-Yang Li, Indrajit Das, Ailin Lepletier, Venkateswar Addala, Tobias Bald, Kimberley Stannard, Deborah Barkauskas, Jing Liu, Amelia Roman Aguilera, Kazuyoshi Takeda, Matthias Braun, Kyohei Nakamura, Sebastien Jacquelin, Steven W. Lane, Michele W.L. Teng, William C. Dougall, Mark J. Smyth
Tumor-intrinsic CD155 is critical for tumor cell migration and survival.