Steroid-resistant nephrotic syndrome (SRNS) almost invariably progresses to end-stage renal disease. Although more than 50 monogenic causes of SRNS have been described, a large proportion of SRNS remains unexplained. Recently, it was discovered that mutations of NUP93 and NUP205, encoding 2 proteins of the inner ring subunit of the nuclear pore complex (NPC), cause SRNS. Here, we describe mutations in genes encoding 4 components of the outer rings of the NPC, namely NUP107, NUP85, NUP133, and NUP160, in 13 families with SRNS. Using coimmunoprecipitation experiments, we showed that certain pathogenic alleles weakened the interaction between neighboring NPC subunits. We demonstrated that morpholino knockdown of nup107, nup85, or nup133 in Xenopus disrupted glomerulogenesis. Re-expression of WT mRNA, but not of mRNA reflecting mutations from SRNS patients, mitigated this phenotype. We furthermore found that CRISPR/Cas9 knockout of NUP107, NUP85, or NUP133 in podocytes activated Cdc42, an important effector of SRNS pathogenesis. CRISPR/Cas9 knockout of nup107 or nup85 in zebrafish caused developmental anomalies and early lethality. In contrast, an in-frame mutation of nup107 did not affect survival, thus mimicking the allelic effects seen in humans. In conclusion, we discovered here that mutations in 4 genes encoding components of the outer ring subunits of the NPC cause SRNS and thereby provide further evidence that specific hypomorphic mutations in these essential genes cause a distinct, organ-specific phenotype.
Daniela A. Braun, Svjetlana Lovric, David Schapiro, Ronen Schneider, Jonathan Marquez, Maria Asif, Muhammad Sajid Hussain, Ankana Daga, Eugen Widmeier, Jia Rao, Shazia Ashraf, Weizhen Tan, C. Patrick Lusk, Amy Kolb, Tilman Jobst-Schwan, Johanna Magdalena Schmidt, Charlotte A. Hoogstraten, Kaitlyn Eddy, Thomas M. Kitzler, Shirlee Shril, Abubakar Moawia, Kathrin Schrage, Arwa Ishaq A. Khayyat, Jennifer A. Lawson, Heon Yung Gee, Jillian K. Warejko, Tobias Hermle, Amar J. Majmundar, Hannah Hugo, Birgit Budde, Susanne Motameny, Janine Altmüller, Angelika Anna Noegel, Hanan M. Fathy, Daniel P. Gale, Syeda Seema Waseem, Ayaz Khan, Larissa Kerecuk, Seema Hashmi, Nilufar Mohebbi, Robert Ettenger, Erkin Serdaroğlu, Khalid A. Alhasan, Mais Hashem, Sara Goncalves, Gema Ariceta, Mercedes Ubetagoyena, Wolfram Antonin, Shahid Mahmood Baig, Fowzan S. Alkuraya, Qian Shen, Hong Xu, Corinne Antignac, Richard P. Lifton, Shrikant Mane, Peter Nürnberg, Mustafa K. Khokha, Friedhelm Hildebrandt
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 1,040 | 412 |
203 | 153 | |
Figure | 351 | 6 |
Table | 116 | 0 |
Supplemental data | 74 | 35 |
Citation downloads | 77 | 0 |
Totals | 1,861 | 606 |
Total Views | 2,467 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.