Recruitment of macrophages to sites of cell death is critical for induction of an immunologic response. Calcium concentrations in extracellular fluids vary markedly, and are particularly high at sites of injury or infection. We hypothesized that extracellular calcium participates in modulating the immune response, perhaps acting via the seven-transmembrane calcium-sensing receptor (CaR) on mature monocytes/macrophages. We observed a dose-dependent increase in monocyte chemotaxis in response to extracellular calcium or the selective allosteric CaR activator NPS R-467. In contrast, monocytes derived from mice deficient in CaR lacked the normal chemotactic response to a calcium gradient. Notably, CaR activation of monocytes bearing the receptor synergistically augmented the transmigration response of monocytes to the chemokine MCP-1 in association with increased cell-surface expression of its cognate receptor, CCR2. Conversely, stimulation of monocytes with MCP-1 or SDF-1α reciprocally increased CaR expression, suggesting a dual-enhancing interaction of Ca2+ with chemokines in recruiting inflammatory cells. Subcutaneous administration in mice of Ca2+, MCP-1, or (more potently) the combination of Ca2+ and MCP-1, elicited an inflammatory infiltrate consisting of monocytes/macrophages. Thus extracellular calcium functions as an ionic chemokinetic agent capable of modulating the innate immune response in vivo and in vitro by direct and indirect actions on monocytic cells. Calcium deposition may be both consequence and cause of chronic inflammatory changes at sites of injury, infection, and atherosclerosis.
Ivona T. Olszak, Mark C. Poznansky, Richard H. Evans, Douglas Olson, Claudine Kos, Martin R. Pollak, Edward M. Brown, David T. Scadden
Usage data is cumulative from December 2023 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 365 | 75 |
119 | 19 | |
Figure | 124 | 8 |
Table | 50 | 0 |
Citation downloads | 54 | 0 |
Totals | 712 | 102 |
Total Views | 814 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.