Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

15-deoxy-Δ12,14-PGJ2 induces synoviocyte apoptosis and suppresses adjuvant-induced arthritis in rats
Yutaka Kawahito, … , Timothy Hla, Hajime Sano
Yutaka Kawahito, … , Timothy Hla, Hajime Sano
Published January 15, 2000
Citation Information: J Clin Invest. 2000;106(2):189-197. https://doi.org/10.1172/JCI9652.
View: Text | PDF
Article Article has an altmetric score of 6

15-deoxy-Δ12,14-PGJ2 induces synoviocyte apoptosis and suppresses adjuvant-induced arthritis in rats

  • Text
  • PDF
Abstract

Peroxisome proliferator–activated receptors (PPARs) are members of the nuclear hormone receptor superfamily and have a dominant regulatory role in adipocyte and monocyte differentiation. PPAR-γ agonists are also negative regulators of macrophage activation and have modulatory effects on tumorigenesis. In this study we demonstrate that synovial tissue localized expression of PPAR-γ in patients with rheumatoid arthritis (RA). We detected markedly enhanced expression of PPAR-γ in macrophages, as well as modestly enhanced expression in the synovial lining layer, fibroblasts, and endothelial cells. Activation of the PPAR-γ by 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) and the synthetic PPAR-γ ligand (troglitazone) induced RA synoviocyte apoptosis in vitro. Moreover, intraperitoneal administration of these PPAR-γ ligands ameliorated adjuvant-induced arthritis with suppression of pannus formation and mononuclear cell infiltration in female Lewis rats. Anti-inflammatory effects of 15d-PGJ2 were more potent than troglitazone. These findings suggest that PPAR-γ may be an important immunoinflammatory mediator and its ligands, especially 15d-PGJ2, may be useful in the treatment of RA.

Authors

Yutaka Kawahito, Motoharu Kondo, Yasunori Tsubouchi, Akira Hashiramoto, David Bishop-Bailey, Ken-ichiro Inoue, Masataka Kohno, Ryoji Yamada, Timothy Hla, Hajime Sano

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 626 41
PDF 77 24
Figure 365 9
Citation downloads 54 0
Totals 1,122 74
Total Views 1,196
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 12 patents
40 readers on Mendeley
See more details