Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • 100th anniversary
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Medicine
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Reviews
    • Viewpoints
    • Top read articles
  • Clinical Medicine

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Medicine
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Reviews
  • Viewpoints
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
TNF-driven adaptive response mediates resistance to EGFR inhibition in lung cancer
Ke Gong, … , Dawen Zhao, Amyn A. Habib
Ke Gong, … , Dawen Zhao, Amyn A. Habib
Published April 3, 2018
Citation Information: J Clin Invest. 2018;128(6):2500-2518. https://doi.org/10.1172/JCI96148.
View: Text | PDF
Research Article Therapeutics

TNF-driven adaptive response mediates resistance to EGFR inhibition in lung cancer

  • Text
  • PDF
Abstract

Although aberrant EGFR signaling is widespread in cancer, EGFR inhibition is effective only in a subset of non–small cell lung cancer (NSCLC) with EGFR activating mutations. A majority of NSCLCs express EGFR wild type (EGFRwt) and do not respond to EGFR inhibition. TNF is a major mediator of inflammation-induced cancer. We find that a rapid increase in TNF level is a universal adaptive response to EGFR inhibition in NSCLC, regardless of EGFR status. EGFR signaling actively suppresses TNF mRNA levels by inducing expression of miR-21, resulting in decreased TNF mRNA stability. Conversely, EGFR inhibition results in loss of miR-21 and increased TNF mRNA stability. In addition, TNF-induced NF-κB activation leads to increased TNF transcription in a feed-forward loop. Inhibition of TNF signaling renders EGFRwt-expressing NSCLC cell lines and an EGFRwt patient-derived xenograft (PDX) model highly sensitive to EGFR inhibition. In EGFR-mutant oncogene-addicted cells, blocking TNF enhances the effectiveness of EGFR inhibition. EGFR plus TNF inhibition is also effective in NSCLC with acquired resistance to EGFR inhibition. We suggest concomitant EGFR and TNF inhibition as a potentially new treatment approach that could be beneficial for a majority of lung cancer patients.

Authors

Ke Gong, Gao Guo, David E. Gerber, Boning Gao, Michael Peyton, Chun Huang, John D. Minna, Kimmo J. Hatanpaa, Kemp Kernstine, Ling Cai, Yang Xie, Hong Zhu, Farjana J. Fattah, Shanrong Zhang, Masaya Takahashi, Bipasha Mukherjee, Sandeep Burma, Jonathan Dowell, Kathryn Dao, Vassiliki A. Papadimitrakopoulou, Victor Olivas, Trever G. Bivona, Dawen Zhao, Amyn A. Habib

×

Figure 10

Erlotinib induces TNF and p65 activation in patient tissue.

Options: View larger image (or click on image) Download as PowerPoint
Erlotinib induces TNF and p65 activation in patient tissue.
(A, D, and E...
(A, D, and E) RNA was extracted from FFPE tissue from 22 NSCLC patients (13 untreated and 9 treated with erlotinib). TNF, LTB, and IL2RA mRNA levels were quantified by qPCR. Each dot represents the log2 mRNA level of each patient and median ± interquartile range. *P < 0.05, by Student’s t test. (B) Immunostaining of nuclear-localized NF-κB p65 from representative tumor sections of 2 different patients in TKI-untreated (top) and -treated groups (bottom) (n = 3). p65-positive cells are indicated by black arrows. Scale bar: 50 μm. (C) Quantification of p65-positive cells. Four fields (×400) were randomly selected for each tissue block (n = 12). Data represent the mean ± SEM. **P < 0.01, by Student’s t test. (F) Association between patients’ progression-free survival (PFS) and their TNF/NF-κB gene expression profiles in the BATTLE trial was analyzed by log-rank test. Low or high levels of gene were defined as higher or lower than the median value of 25 patients. P less than 0.05 was considered statistically significant.

Copyright © 2024 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts