Coronary revascularization is an effective means of treating ischemic heart disease; however, current therapeutic revascularization strategies are limited to large caliber vessels. Because the mammalian heart scars following cardiac injury, recent work showing that cardiac fibroblasts can transdifferentiate into new coronary endothelium raises a new and exciting approach to promoting endogenous revascularization following cardiac injury. In this issue of the JCI, He et al. report on their employment of a battery of lineage-tracing tools to address the developmental origins of fibroblasts that give rise to new endothelial cells. Surprisingly, cardiac fibroblasts did not appear to contribute appreciably to regeneration of cardiac endothelium. Instead, cardiac endothelial cells were likely to proliferate and generate new endothelium following injury. As these conclusions diverge from prior findings, additional work will be required to understand the sources that generate cardiac endothelium in new blood vessels after injury. Clarification of the origins of coronary endothelial cells during cardiac repair is essential for identifying improved approaches to revascularizing damaged myocardium in patients with ischemic heart disease.
Ravi Karra, Agoston O. Walter, Sean M. Wu
Divergent models of the source of new cardiac endothelial cells following injury.