Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Anthrax toxin receptor 1 is the cellular receptor for Seneca Valley virus
Linde A. Miles, … , John T. Poirier, Charles M. Rudin
Linde A. Miles, … , John T. Poirier, Charles M. Rudin
Published June 26, 2017
Citation Information: J Clin Invest. 2017;127(8):2957-2967. https://doi.org/10.1172/JCI93472.
View: Text | PDF
Research Article Virology Article has an altmetric score of 11

Anthrax toxin receptor 1 is the cellular receptor for Seneca Valley virus

  • Text
  • PDF
Abstract

Seneca Valley virus (SVV) is an oncolytic picornavirus with selective tropism for neuroendocrine cancers. It has shown promise as a cancer therapeutic in preclinical studies and early-phase clinical trials. Here, we have identified anthrax toxin receptor 1 (ANTXR1) as the receptor for SVV using genome-wide loss-of-function screens. ANTXR1 is necessary for permissivity in vitro and in vivo. However, robust SVV replication requires an additional innate immune defect. We found that SVV interacts directly and specifically with ANTXR1, that this interaction is required for SVV binding to permissive cells, and that ANTXR1 expression is necessary and sufficient for infection in cell lines with decreased expression of antiviral IFN genes at baseline. Finally, we identified the region of the SVV capsid that is responsible for receptor recognition using cryoelectron microscopy of the SVV-ANTXR1-Fc complex. These studies identify ANTXR1, a class of receptor that is shared by a mammalian virus and a bacterial toxin, as the cellular receptor for SVV.

Authors

Linde A. Miles, Laura N. Burga, Eric E. Gardner, Mihnea Bostina, John T. Poirier, Charles M. Rudin

×

Figure 5

SVV interacts directly with ANTXR1.

Options: View larger image (or click on image) Download as PowerPoint
SVV interacts directly with ANTXR1.
(A) SVV was coimmunoprecipitated wit...
(A) SVV was coimmunoprecipitated with decreasing amounts of an ANTXR1-Fc chimera. Bound proteins were eluted and analyzed by Western blot using an anti-SVV antibody. Input SVV was immunoblotted as a positive control. Blot representative of 2 independent experiments. (B) SVV was coimmunoprecipitated with the ANTXR1-Fc chimera. Washes were performed with increasing concentrations of NaCl up to 2 M. Bound proteins were eluted and analyzed as described in A. Blot representative of 2 independent experiments. (C) SVV was coimmunoprecipitated with the ANTXR1-Fc chimera or decreasing amounts of ANTXR2-Fc chimera and analyzed as described in A. Blot representative of 2 independent experiments. (D) SVV-GFP was preincubated with the ANTXR1-Fc chimera, ANTXR2-Fc chimera, or IgG-Fc isotype control before an 8-hour incubation with parental H446 cells. Cell nuclei were stained with a NucBlue Live ReadyProbe. Scale bars: 100 μm. Images representative of 3 independent experiments. (E) ANTXR1-KO (blue) and TEX2-KO (red) cells were incubated with SVV-Cy5 and analyzed by flow cytometry. Parental H446 (black) and DMS114 (gray) cells were used as positive and negative controls for SVV binding, respectively. Data representative of 2 independent experiments. (F) Cryo-EM density map of SVV capsid (blue) bound to ANTXR1-Fc chimera (green).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 5 X users
Referenced in 7 patents
Referenced in 1 Wikipedia pages
52 readers on Mendeley
See more details