Anticancer vaccination is a promising approach to increase the efficacy of cytotoxic T lymphocyte–associated protein 4 (CTLA-4) and programmed death ligand 1 (PD-L1) checkpoint blockade therapies. However, the landmark FDA registration trial for anti–CTLA-4 therapy (ipilimumab) revealed a complete lack of benefit of adding vaccination with gp100 peptide formulated in incomplete Freund’s adjuvant (IFA). Here, using a mouse model of melanoma, we found that gp100 vaccination induced gp100-specific effector T cells (Teffs), which dominantly forced trafficking of anti–CTLA-4–induced, non-gp100–specific Teffs away from the tumor, reducing tumor control. The inflamed vaccination site subsequently also sequestered and destroyed anti–CTLA-4–induced Teffs with specificities for tumor antigens other than gp100, reducing the antitumor efficacy of anti–CTLA-4 therapy. Mechanistically, Teffs at the vaccination site recruited inflammatory monocytes, which in turn attracted additional Teffs in a vicious cycle mediated by IFN-γ, CXCR3, ICAM-1, and CCL2, dependent on IFA formulation. In contrast, nonpersistent vaccine formulations based on dendritic cells, viral vectors, or water-soluble peptides potently synergized with checkpoint blockade of both CTLA-4 and PD-L1 and induced complete tumor regression, including in settings of primary resistance to dual checkpoint blockade. We conclude that cancer vaccine formulation can dominantly determine synergy, or lack thereof, with CTLA-4 and PD-L1 checkpoint blockade therapy for cancer.
Yared Hailemichael, Amber Woods, Tihui Fu, Qiuming He, Michael C. Nielsen, Farah Hasan, Jason Roszik, Zhilan Xiao, Christina Vianden, Hiep Khong, Manisha Singh, Meenu Sharma, Faisal Faak, Derek Moore, Zhimin Dai, Scott M. Anthony, Kimberly S. Schluns, Padmanee Sharma, Victor H. Engelhard, Willem W. Overwijk
Usage data is cumulative from June 2024 through June 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 888 | 87 |
111 | 35 | |
Figure | 519 | 4 |
Supplemental data | 53 | 0 |
Citation downloads | 69 | 0 |
Totals | 1,640 | 126 |
Total Views | 1,766 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.