Intake of hemoglobin by the hemoglobin-haptoglobin receptor CD163 leads to a distinct alternative non–foam cell antiinflammatory macrophage phenotype that was previously considered atheroprotective. Here, we reveal an unexpected but important pathogenic role for these macrophages in atherosclerosis. Using human atherosclerotic samples, cultured cells, and a mouse model of advanced atherosclerosis, we investigated the role of intraplaque hemorrhage on macrophage function with respect to angiogenesis, vascular permeability, inflammation, and plaque progression. In human atherosclerotic lesions, CD163+ macrophages were associated with plaque progression, microvascularity, and a high level of HIF1α and VEGF-A expression. We observed irregular vascular endothelial cadherin in intraplaque microvessels surrounded by CD163+ macrophages. Within these cells, activation of HIF1α via inhibition of prolyl hydroxylases promoted VEGF-mediated increases in intraplaque angiogenesis, vascular permeability, and inflammatory cell recruitment. CD163+ macrophages increased intraplaque endothelial VCAM expression and plaque inflammation. Subjects with homozygous minor alleles of the SNP rs7136716 had elevated microvessel density, increased expression of CD163 in ruptured coronary plaques, and a higher risk of myocardial infarction and coronary heart disease in population cohorts. Thus, our findings highlight a nonlipid-driven mechanism by which alternative macrophages promote plaque angiogenesis, leakiness, inflammation, and progression via the CD163/HIF1α/VEGF-A pathway.
Liang Guo, Hirokuni Akahori, Emanuel Harari, Samantha L. Smith, Rohini Polavarapu, Vinit Karmali, Fumiyuki Otsuka, Rachel L. Gannon, Ryan E. Braumann, Megan H. Dickinson, Anuj Gupta, Audrey L. Jenkins, Michael J. Lipinski, Johoon Kim, Peter Chhour, Paul S. de Vries, Hiroyuki Jinnouchi, Robert Kutys, Hiroyoshi Mori, Matthew D. Kutyna, Sho Torii, Atsushi Sakamoto, Cheol Ung Choi, Qi Cheng, Megan L. Grove, Mariem A. Sawan, Yin Zhang, Yihai Cao, Frank D. Kolodgie, David P. Cormode, Dan E. Arking, Eric Boerwinkle, Alanna C. Morrison, Jeanette Erdmann, Nona Sotoodehnia, Renu Virmani, Aloke V. Finn
Usage data is cumulative from March 2024 through March 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 2,155 | 666 |
347 | 280 | |
Figure | 729 | 7 |
Table | 128 | 0 |
Supplemental data | 81 | 16 |
Citation downloads | 92 | 0 |
Totals | 3,532 | 969 |
Total Views | 4,501 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.