Adoptive transfer of T cells engineered to express a hepatitis B virus–specific (HBV-specific) T cell receptor (TCR) may supplement HBV-specific immune responses in chronic HBV patients and facilitate HBV control. However, the risk of triggering unrestrained proliferation of permanently engineered T cells raises safety concerns that have hampered testing of this approach in patients. The aim of the present study was to generate T cells that transiently express HBV-specific TCRs using mRNA electroporation and to assess their antiviral and pathogenetic activity in vitro and in HBV-infected human liver chimeric mice. We assessed virological and gene-expression changes using quantitative reverse-transcriptase PCR (qRT-PCR), immunofluorescence, and Luminex technology. HBV-specific T cells lysed HBV-producing hepatoma cells in vitro. In vivo, 3 injections of HBV-specific T cells caused progressive viremia reduction within 12 days of treatment in animals reconstituted with haplotype-matched hepatocytes, whereas viremia remained stable in mice receiving irrelevant T cells redirected toward hepatitis C virus–specific TCRs. Notably, increases in alanine aminotransferase levels, apoptotic markers, and human inflammatory cytokines returned to pretreatment levels within 9 days after the last injection. T cell transfer did not trigger inflammation in uninfected mice. These data support the feasibility of using mRNA electroporation to engineer HBV TCR–redirected T cells in patients with chronic HBV infection.
Janine Kah, Sarene Koh, Tassilo Volz, Erica Ceccarello, Lena Allweiss, Marc Lütgehetmann, Antonio Bertoletti, Maura Dandri
Lytic and antiviral function of mRNA HBV–specific TCR–electroporated T cells in vitro.