Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Regulation of expression of the multidrug resistance protein MRP1 by p53 in human prostate cancer cells
Gregory F. Sullivan, … , Judy Bash-Babula, William N. Hait
Gregory F. Sullivan, … , Judy Bash-Babula, William N. Hait
Published May 1, 2000
Citation Information: J Clin Invest. 2000;105(9):1261-1267. https://doi.org/10.1172/JCI9290.
View: Text | PDF
Article Article has an altmetric score of 3

Regulation of expression of the multidrug resistance protein MRP1 by p53 in human prostate cancer cells

  • Text
  • PDF
Abstract

The expression of several drug-resistance genes, including MRP and p53, increases with advancing stage of human prostate cancer. Altered transcription could account for the genotypic alterations associated with prostate cancer progression, and it was recently reported that the promoter of MRP1 is activated in the presence of mutant p53. To determine whether there is a relationship between p53 status and the expression of MRP1, a human, temperature-sensitive p53 mutant (tsp Val138) was transfected into LNCaP human prostate cancer cells. In the transfected cell line (LVCaP), the wild-type p53 produced growth arrest at the G1/S interface of the cell cycle, inhibited colony formation, and induced p21waf1/cip1. Temperature shifting to 38°C (p53 mutant) produced a time-dependent increase in expression of MRP1. This change in MRP1 expression was also seen in isogenic cell lines in which p53 was inactivated by human papilloma virus (HPV)16E6 protein or by a dominant-negative mutant. Functional assays revealed a decrease in drug accumulation and drug sensitivity associated with mutant p53 and increased MRP1 expression. These results provide the first mechanistic link between expression of MRP1 and mutation of p53 in human prostate cancer and support recent clinical associations. Furthermore, these data suggest a mechanism tying accumulation of p53 mutations to the multidrug resistance phenotype seen in this disease.

Authors

Gregory F. Sullivan, Jin-Ming Yang, Andrew Vassil, Jun Yang, Judy Bash-Babula, William N. Hait

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 574 50
PDF 46 16
Figure 308 11
Table 69 0
Citation downloads 62 0
Totals 1,059 77
Total Views 1,136
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 2 patents
41 readers on Mendeley
See more details