The phosphatase Cdc25A plays an important role in cell cycle regulation by removing inhibitory phosphates from tyrosine and threonine residues of cyclin-dependent kinases, and it has been shown to transform diploid murine fibroblasts in cooperation with activated Ras. Here we show that Cdc25A is overexpressed in primary breast tumors and that such overexpression is correlated with higher levels of cyclin-dependent kinase 2 (Cdk2) enzymatic activity in vivo. Furthermore, in the breast cancer cell line MCF-7, Cdc25A activity is necessary for both the activation of Cdk2 and the subsequent induction of S-phase entry. Finally, in a series of small (< 1 cm) breast carcinomas, overexpression of Cdc25A was found in 47% of patients and was associated with poor survival. These data suggest that overexpression of Cdc25A contributes to the biological behavior of primary breast tumors and that both Cdc25A and Cdk2 are suitable therapeutic targets in early-stage breast cancer.
M. Giulia Cangi, Barry Cukor, Peggy Soung, Sabina Signoretti, Gilberto Moreira Jr., Moksha Ranashinge, Blake Cady, Michele Pagano, Massimo Loda
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 510 | 128 |
77 | 29 | |
Figure | 260 | 9 |
Table | 79 | 0 |
Citation downloads | 61 | 0 |
Totals | 987 | 166 |
Total Views | 1,153 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.