Polypeptide vaccines effectively activate human T cells but suffer from poor biological stability, which confines both transport logistics and in vivo therapeutic activity. Synthetic biology has the potential to address these limitations through the generation of highly stable antigenic “mimics” using subunits that do not exist in the natural world. We developed a platform based on D–amino acid combinatorial chemistry and used this platform to reverse engineer a fully artificial CD8+ T cell agonist that mirrored the immunogenicity profile of a native epitope blueprint from influenza virus. This nonnatural peptide was highly stable in human serum and gastric acid, reflecting an intrinsic resistance to physical and enzymatic degradation. In vitro, the synthetic agonist stimulated and expanded an archetypal repertoire of polyfunctional human influenza virus–specific CD8+ T cells. In vivo, specific responses were elicited in naive humanized mice by subcutaneous vaccination, conferring protection from subsequent lethal influenza challenge. Moreover, the synthetic agonist was immunogenic after oral administration. This proof-of-concept study highlights the power of synthetic biology to expand the horizons of vaccine design and therapeutic delivery.
John J. Miles, Mai Ping Tan, Garry Dolton, Emily S.J. Edwards, Sarah A.E. Galloway, Bruno Laugel, Mathew Clement, Julia Makinde, Kristin Ladell, Katherine K. Matthews, Thomas S. Watkins, Katie Tungatt, Yide Wong, Han Siean Lee, Richard J. Clark, Johanne M. Pentier, Meriem Attaf, Anya Lissina, Ann Ager, Awen Gallimore, Pierre J. Rizkallah, Stephanie Gras, Jamie Rossjohn, Scott R. Burrows, David K. Cole, David A. Price, Andrew K. Sewell
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 1,498 | 115 |
152 | 33 | |
Figure | 460 | 5 |
Supplemental data | 62 | 0 |
Citation downloads | 103 | 0 |
Totals | 2,275 | 153 |
Total Views | 2,428 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.