Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Genetic predisposition to the metabolism of irinotecan (CPT-11). Role of uridine diphosphate glucuronosyltransferase isoform 1A1 in the glucuronidation of its active metabolite (SN-38) in human liver microsomes.
L Iyer, … , B L Coffman, M J Ratain
L Iyer, … , B L Coffman, M J Ratain
Published February 15, 1998
Citation Information: J Clin Invest. 1998;101(4):847-854. https://doi.org/10.1172/JCI915.
View: Text | PDF
Research Article Article has an altmetric score of 9

Genetic predisposition to the metabolism of irinotecan (CPT-11). Role of uridine diphosphate glucuronosyltransferase isoform 1A1 in the glucuronidation of its active metabolite (SN-38) in human liver microsomes.

  • Text
  • PDF
Abstract

Irinotecan (CPT-11) is a promising antitumor agent, recently approved for use in patients with metastatic colorectal cancer. Its active metabolite, SN-38, is glucuronidated by hepatic uridine diphosphate glucuronosyltransferases (UGTs). The major dose-limiting toxicity of irinotecan therapy is diarrhea, which is believed to be secondary to the biliary excretion of SN-38, the extent of which is determined by SN-38 glucuronidation. The purpose of this study was to identify the specific isoform of UGT involved in SN-38 glucuronidation. In vitro glucuronidation of SN-38 was screened in hepatic microsomes from normal rats (n = 4), normal humans (n = 25), Gunn rats (n = 3), and patients (n = 4) with Crigler-Najjar type I (CN-I) syndrome. A wide intersubject variability in in vitro SN-38 glucuronide formation rates was found in humans. Gunn rats and CN-I patients lacked SN-38 glucuronidating activity, indicating the role of UGT1 isoform in SN-38 glucuronidation. A significant correlation was observed between SN-38 and bilirubin glucuronidation (r = 0.89; P = 0.001), whereas there was a poor relationship between para-nitrophenol and SN-38 glucuronidation (r = 0.08; P = 0.703). Intact SN-38 glucuronidation was observed only in HK293 cells transfected with the UGT1A1 isozyme. These results demonstrate that UGT1A1 is the isoform responsible for SN-38 glucuronidation. These findings indicate a genetic predisposition to the metabolism of irinotecan, suggesting that patients with low UGT1A1 activity, such as those with Gilbert's syndrome, may be at an increased risk for irinotecan toxicity.

Authors

L Iyer, C D King, P F Whitington, M D Green, S K Roy, T R Tephly, B L Coffman, M J Ratain

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 602 99
PDF 108 60
Citation downloads 104 0
Totals 814 159
Total Views 973
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 1 policy sources
Referenced in 4 patents
Referenced in 1 clinical guideline sources
99 readers on Mendeley
See more details