Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Blood-derived angioblasts accelerate blood-flow restoration in diabetic mice
Gina C. Schatteman, … , Sherry G. Dodds, Barbara A. Christy
Gina C. Schatteman, … , Sherry G. Dodds, Barbara A. Christy
Published August 15, 2000
Citation Information: J Clin Invest. 2000;106(4):571-578. https://doi.org/10.1172/JCI9087.
View: Text | PDF
Article Article has an altmetric score of 6

Blood-derived angioblasts accelerate blood-flow restoration in diabetic mice

  • Text
  • PDF
Abstract

Endothelial cell progenitors, angioblasts, have been detected in the peripheral blood of adult humans, mice, and rabbits. These cells have been shown to incorporate into the endothelium of newly forming blood vessels in pathological and nonpathological conditions. Here we investigated the possibility that the CD34-expressing leukocytes (CD34+ cells) that appear to be enriched for angioblasts could be used to accelerate the rate of blood-flow restoration in nondiabetic and diabetic mice undergoing neovascularization due to hindlimb ischemia. CD34+ cells did not accelerate the restoration of flow in nondiabetic mice, but dramatically increased it in diabetic mice. Furthermore, CD34+ cells derived from type 1 diabetics produced fewer differentiated endothelial cells in culture than did their type 2 diabetic– or nondiabetic-derived counterparts. In vitro experiments suggest that hyperglycemia per se does not alter the ability of angioblasts to differentiate or of angioblast-derived endothelial cells to proliferate. In contrast, hyperinsulinemia may enhance angioblast differentiation but impair angioblast-derived endothelial cell survival or proliferation. Our findings suggest that CD34+ cells may be a useful tool for therapeutic angiogenesis in diabetics.

Authors

Gina C. Schatteman, Heather D. Hanlon, Chunhua Jiao, Sherry G. Dodds, Barbara A. Christy

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 579 57
PDF 55 13
Figure 218 9
Table 35 0
Citation downloads 67 0
Totals 954 79
Total Views 1,033
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 8 patents
67 readers on Mendeley
See more details