Thrombin stimulates the expression of multiple genes in endothelial cells (ECs), but the trans-acting factors responsible for this induction remain undefined. We have previously described a thrombin-inducible nuclear factor (TINF), which binds to an element in the PDGF B promoter and is responsible for the thrombin inducibility of this gene. Inactive cytoplasmic TINF is rapidly activated and translocated to nuclei of ECs upon stimulation with thrombin. We have now purified TINF from thrombin-treated ECs. Amino acid sequencing revealed it to be a member of the Y-box protein family, and the sole Y-box protein–encoding cDNA we detected in human or bovine ECs corresponded to DNA-binding protein B (dbpB). DbpB translocated to the nucleus after thrombin stimulation of ECs as shown by FACS analysis of nuclei from ECs expressing GFP-dbpB fusion proteins. During thrombin activation, dbpB was found to be cleaved, yielding a 30-kDa NH2-terminal fragment that recognized the thrombin-response element sequence, but not the Y-box consensus sequence. Preincubation of ECs with protein tyrosine phosphatase inhibitors completely blocked dbpB activation by thrombin and blocked induction of endogenous PDGF B–chain mRNA and promoter activation by thrombin. Y-box proteins are known to act constitutively to regulate the expression of several genes. Activation of this class of transcription factors in response to thrombin or any other agonist represents a novel signaling pathway.
Olga I. Stenina, Earl J. Poptic, Paul E. DiCorleto
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 234 | 24 |
66 | 17 | |
Figure | 176 | 4 |
Citation downloads | 55 | 0 |
Totals | 531 | 45 |
Total Views | 576 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.