Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Mice lacking β3 integrins are osteosclerotic because of dysfunctional osteoclasts
Kevin P. McHugh, … , Richard O. Hynes, Steven L. Teitelbaum
Kevin P. McHugh, … , Richard O. Hynes, Steven L. Teitelbaum
Published February 15, 2000
Citation Information: J Clin Invest. 2000;105(4):433-440. https://doi.org/10.1172/JCI8905.
View: Text | PDF
Article Article has an altmetric score of 3

Mice lacking β3 integrins are osteosclerotic because of dysfunctional osteoclasts

  • Text
  • PDF
Abstract

Osteoclasts express the αvβ3 integrin, an adhesion receptor that has been implicated in bone resorption and that is therefore a potential therapeutic target. To assess the role of this heterodimer in skeletal development in vivo, we engineered mice in which the gene for the β3 integrin subunit was deleted. Bone marrow macrophages derived from these mutants differentiate in vitro into numerous osteoclasts, thus establishing that αvβ3 is not necessary for osteoclast recruitment. Furthermore, the closely related integrin, αvβ5, does not substitute for αvβ3 during cytokine stimulation or authentic osteoclastogenesis. β3 knockout mice, but not their heterozygous littermates, develop histologically and radiographically evident osteosclerosis with age. Despite their increased bone mass, β3-null mice contain 3.5-fold more osteoclasts than do heterozygotes. These mutant osteoclasts are, however, dysfunctional, as evidenced by their reduced ability to resorb whale dentin in vitro and the significant hypocalcemia seen in the knockout mice. The resorptive defect in β3-deficient osteoclasts may reflect absence of matrix-derived intracellular signals, since their cytoskeleton is distinctly abnormal and they fail to spread in vitro, to form actin rings ex vivo, or to form normal ruffled membranes in vivo. Thus, although it is not required for osteoclastogenesis, the integrin αvβ3 is essential for normal osteoclast function.

Authors

Kevin P. McHugh, Kairbaan Hodivala-Dilke, Ming-Hao Zheng, Noriyuki Namba, Jonathan Lam, Deborah Novack, Xu Feng, F. Patrick Ross, Richard O. Hynes, Steven L. Teitelbaum

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 1,044 75
PDF 72 33
Figure 473 11
Citation downloads 68 0
Totals 1,657 119
Total Views 1,776
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 4 patents
178 readers on Mendeley
See more details