Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Molecular dissection of cardiac repolarization by in vivo Kv4.3 gene transfer
Uta C. Hoppe, … , Eduardo Marbán, David C. Johns
Uta C. Hoppe, … , Eduardo Marbán, David C. Johns
Published April 15, 2000
Citation Information: J Clin Invest. 2000;105(8):1077-1084. https://doi.org/10.1172/JCI8757.
View: Text | PDF
Article Article has an altmetric score of 3

Molecular dissection of cardiac repolarization by in vivo Kv4.3 gene transfer

  • Text
  • PDF
Abstract

Heart failure leads to marked suppression of the Ca2+-independent transient outward current (Ito1), but it is not clear whether Ito1 downregulation suffices to explain the concomitant action potential prolongation. To investigate the role of Ito1 in cardiac repolarization while circumventing culture-related action potential alterations, we injected adenovirus vectors in vivo to overexpress or to suppress Ito1 in guinea pigs and rats, respectively. Myocytes were isolated 72 hours after intramyocardial injection and stimulation of the ecdysone-inducible vectors with intraperitoneal injection of an ecdysone analog. Kv4.3-infected guinea pig myocytes exhibited robust transient outward currents. Increasing density of Ito1 progressively depressed the plateau potential in Kv4.3-infected guinea pig myocytes and abbreviated action potential duration (APD). In vivo infection with a dominant-negative Kv4.3-W362F construct suppressed peak Ito1 in rat ventriculocytes, elevated the plateau height, significantly prolonged the APD, and resulted in a prolongation by about 30% of the QT interval in surface electrocardiogram recordings. These results indicate that Ito1 plays a crucial role in setting the plateau potential and overall APD, supporting a causative role for suppression of this current in the electrophysiological alterations of heart failure. The electrocardiographic findings indicate that somatic gene transfer can be used to create gene-specific animal models of the long QT syndrome.

Authors

Uta C. Hoppe, Eduardo Marbán, David C. Johns

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 351 17
PDF 54 5
Figure 324 5
Citation downloads 102 0
Totals 831 27
Total Views 858
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 2 patents
20 readers on Mendeley
See more details