Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

A proangiogenic signaling axis in myeloid cells promotes malignant progression of glioma
Yujie Huang, … , David Lyden, Jeffrey Greenfield
Yujie Huang, … , David Lyden, Jeffrey Greenfield
Published April 10, 2017
Citation Information: J Clin Invest. 2017;127(5):1826-1838. https://doi.org/10.1172/JCI86443.
View: Text | PDF
Research Article Angiogenesis Oncology Article has an altmetric score of 39

A proangiogenic signaling axis in myeloid cells promotes malignant progression of glioma

  • Text
  • PDF
Abstract

Tumors are capable of coopting hematopoietic cells to create a suitable microenvironment to support malignant growth. Here, we have demonstrated that upregulation of kinase insert domain receptor (KDR), also known as VEGFR2, in a myeloid cell sublineage is necessary for malignant progression of gliomas in transgenic murine models and is associated with high-grade tumors in patients. KDR expression increased in myeloid cells as myeloid-derived suppressor cells (MDSCs) accumulated, which was associated with the transformation and progression of low-grade fibrillary astrocytoma to high-grade anaplastic gliomas. KDR deficiency in murine BM-derived cells (BMDCs) suppressed the differentiation of myeloid lineages and reduced granulocytic/monocytic populations. The depletion of myeloid-derived KDR compromised its proangiogenic function, which inhibited the angiogenic switch necessary for malignant progression of low-grade to high-grade tumors. We also identified inhibitor of DNA binding protein 2 (ID2) as a key upstream regulator of KDR activation during myeloid differentiation. Deficiency of ID2 in BMDCs led to downregulation of KDR, suppression of proangiogenic myeloid cells, and prevention of low-grade to high-grade transition. Tumor-secreted TGF-β and granulocyte-macrophage CSF (GM-CSF) enhanced the KDR/ID2 signaling axis in BMDCs. Our results suggest that modulation of KDR/ID2 signaling may restrict tumor-associated myeloid cells and could potentially be a therapeutic strategy for preventing transformation of premalignant gliomas.

Authors

Yujie Huang, Prajwal Rajappa, Wenhuo Hu, Caitlin Hoffman, Babacar Cisse, Joon-Hyung Kim, Emilie Gorge, Rachel Yanowitch, William Cope, Emma Vartanian, Raymond Xu, Tuo Zhang, David Pisapia, Jenny Xiang, Jason Huse, Irina Matei, Hector Peinado, Jacqueline Bromberg, Eric Holland, Bi-sen Ding, Shahin Rafii, David Lyden, Jeffrey Greenfield

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 642 39
PDF 116 32
Figure 285 5
Supplemental data 55 1
Citation downloads 81 0
Totals 1,179 77
Total Views 1,256
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Picked up by 5 news outlets
Posted by 9 X users
42 readers on Mendeley
See more details