Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Sterol upregulation of human CETP expression in vitro and in transgenic mice by an LXR element
Yi Luo, Alan R. Tall
Yi Luo, Alan R. Tall
Published February 15, 2000
Citation Information: J Clin Invest. 2000;105(4):513-520. https://doi.org/10.1172/JCI8573.
View: Text | PDF
Article Article has an altmetric score of 3

Sterol upregulation of human CETP expression in vitro and in transgenic mice by an LXR element

  • Text
  • PDF
Abstract

The cholesterol ester transfer protein (CETP) facilitates the transfer of HDL cholesterol esters from plasma to the liver. Transgenic mice expressing human CETP, controlled by its natural flanking region, increase expression of this gene in response to hypercholesterolemia. We established a CETP promoter-luciferase reporter assay in differentiated 3T3-L1 adipocytes to map the sterol upregulatory element. Promoter mutagenesis suggested that a direct repeat of a nuclear receptor binding sequence separated by 4 nucleotides (DR4 element, –384 to –399) was responsible for this activity. Using mice carrying normal or mutated promoter sequences, we confirmed the importance of this element for gene induction by dietary sterol. A gel retardation complex containing LXR/RXR was identified using the CETP DR4 element and adipocyte nuclear extracts. Both LXRα/RXRα and LXRβ/RXRα transactivated the CETP promoter via its DR4 element in a sterol-responsive fashion. Thus, the positive sterol response of the CETP gene is mediated by a nuclear receptor binding site that is activated by LXRs. That Cyp7a, the rate-limiting enzyme for conversion of cholesterol into bile acids in the liver, is also regulated by LXRα suggests that this class of nuclear receptor coordinates the regulation of HDL cholesterol ester catabolism and bile acid synthesis in the liver.

Authors

Yi Luo, Alan R. Tall

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 523 37
PDF 66 20
Figure 265 5
Citation downloads 47 0
Totals 901 62
Total Views 963
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 1 patents
67 readers on Mendeley
See more details