Identification of HPV infection as the etiologic agent of virtually all cases of cervical cancer, as well as a proportion of other epithelial cancers, has led to development of three FDA-approved multivalent prophylactic HPV vaccines composed of virus-like particles (VLPs). This essay describes the research and development that led to the VLP vaccines; discusses their safety, efficacy, and short-term effect on HPV-associated disease; and speculates that even a single dose of these vaccines, when given to adolescents, might be able to confer long-term protection. The HPV field exemplifies how long-term funding for basic research has lead to clinical interventions with the long-term potential to eradicate most cancers attributable to HPV infection. Although this essay is the result of my receiving the 2015 Harrington Prize for Innovation in Medicine from the Harrington Discovery Institute and the American Society for Clinical Investigation, this clinical advance has depended on the research of many investigators, development of commercial vaccines by the pharmaceutical companies, and participation of many patient volunteers in the clinical trials.
Douglas R. Lowy
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 1,352 | 249 |
225 | 46 | |
Figure | 495 | 12 |
Citation downloads | 95 | 0 |
Totals | 2,167 | 307 |
Total Views | 2,474 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.