The thiazolidinedione class of insulin-sensitizing, antidiabetic drugs interacts with peroxisome proliferator–activated receptor γ (PPAR-γ). To gain insight into the role of this nuclear receptor in insulin resistance and diabetes, we conducted metabolic studies in the PPAR-γ gene knockout mouse model. Because homozygous PPAR-γ–null mice die in development, we studied glucose metabolism in mice heterozygous for the mutation (PPAR-γ+/– mice). We identified no statistically significant differences in body weight, basal glucose, insulin, or FFA levels between the wild-type (WT) and PPAR-γ+/– groups. Nor was there a difference in glucose excursion between the groups of mice during oral glucose tolerance test, but insulin concentrations of the WT group were greater than those of the PPAR-γ+/– group, and insulin-induced increase in glucose disposal rate was significantly increased in PPAR-γ+/– mice. Likewise, the insulin-induced suppression of hepatic glucose production was significantly greater in the PPAR-γ+/– mice than in the WT mice. Taken together, these results indicate that — counterintuitively — although pharmacological activation of PPAR-γ improves insulin sensitivity, a similar effect is obtained by genetically reducing the expression levels of the receptor.
Philip D.G. Miles, Yaacov Barak, Weiman He, Ronald M. Evans, Jerrold M. Olefsky
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 690 | 42 |
53 | 20 | |
Figure | 195 | 4 |
Table | 45 | 0 |
Citation downloads | 65 | 0 |
Totals | 1,048 | 66 |
Total Views | 1,114 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.